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Abstract
Domain knowledge can affect how a user evaluates different aspects of a recommender system. Recipe
recommendations might be difficult to understand, as some health aspects are implicit. The appropri-
ateness of a recommender’s preference elicitation (PE) method, whether users rate individual items or
item attributes, may depend on the user’s knowledge level. We present an online recipe recommender
experiment. Users (𝑁 = 360) with varying levels of subjective food knowledge faced different cognitive
digital nudges (i.e., food labels) and PE methods. In a 3 (recipes annotated with no labels, Multiple
Traffic Light (MTL) labels, or full nutrition labels) x 2 (PE method: content-based PE or knowledge-based)
between-subjects design. We observed a main effect of knowledge-based PE on the healthiness of chosen
recipes, while MTL label only helped marginally. A Structural Equation Model analysis revealed that the
interplay between user knowledge and the PE method reduced the perceived effort of using the system
and in turn, affected choice difficulty and satisfaction. Moreover, the evaluation of health labels depends
on a user’s level of food knowledge. Our findings emphasize the importance of user characteristics in
the evaluation of food recommenders and the merit of interface and interaction aspects.
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1. Introduction

An increasing number of food decisions are made digitally [1]. In addition to online grocery
stores, recipe websites play a pivotal role in supporting home cooking [2]. At the same time,
users of such websites may find it difficult to navigate a large number of recipes. Some recipes
are more challenging to understand or cook than others [3], where users may lack sufficient
food knowledge or skills to engage with them [4]. For example, while some users have clear
preferences regarding specific recipe features, such as cooking time and the number of ingredi-
ents, others may make food choices based on past positive experiences with a recipe and seek
out ‘more like this’ [5].

The large availability of recipes requires the use of information-filtering systems. Food
recommender systems have played an instrumental role in the popularity of recipe website [6],
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largely focusing on predictive accuracy [7, 2]. However, eating is a particularly challenging
domain to achieve robust improvements in accuracy when aiming to go beyond popularity-
based approaches. Food preferences strongly depend on various factors, such as context [8],
group size [9], time of the day, and the day of the week [2].

Improvements may therefore be sought in other recommender aspects. User preferences are
also formed by how information is presented, combined with the user’s level of understanding
[10, 9]. While users may have a specific eating goal (e.g., health or sustainability [5]), the
information presented by recommenders may be too limited to make an informed decision
[11]. To this end, summary labels, as also used on supermarket products, may help to grasp the
healthiness or nutritional content of a recipe, particularly for novice users.

The user’s knowledge may also affect how a recommender’s preference elicitation method is
evaluated. In the energy conservation domain, a domain subject to behavioral change [12], a
user’s evaluation of a preference elicitation (PE) method seems to depend on the user’s level of
domain knowledge [10, 13]. Users that do not know much about energy conservation tend to
be more satisfied when using a case-based PE method, in which individual items are (dis)liked.
In contrast, experienced users are found to be more satisfied when interacting with attributes
of energy-saving measures, such as effort and investment costs.

We argue that a similar dynamic applies to the food recommender domain. We expect novice
users of recipe recommenders and websites to incrementally explore recipes based on what they
liked previously, as one would in a content-based method [7]. In contrast, experienced users
would seek out new recipes more easily based on preferred attributes, as one would through a
knowledge-based method [14].

This paper examines the role of user knowledge on decisions in a recipe recommender system.
Instead of following an algorithmic optimization approach that only focuses on user preferences
[7], we examine the influence of two other recommender aspects: food labels and preference
elicitation methods. A user’s domain knowledge is critical here, regarding the most optimal
interface representation or interaction method.

First, we apply digital, informational nudges to recommendation lists in the form of nutrition
and health labels. In the food domain, these have been used primarily in supermarkets to
communicate nutrition information to consumers in a simplified manner [15, 16]. Most notable
are summary labels, such as the Nutriscore to classify foods between A and E. Most popular is
the Multiple Traffic Light (MTL) label [17], which uses colors to indicate (un)healthy intakes of
four nutrients: fat, saturated fat, sugar, and salt. This study considers two labels, with varying
degrees of difficulty: The MTL label and the back-of-pack nutritional facts [17].

Second, we examine the role of two different PE methods. First, we develop a content-based
recommender in which a user picks a favorite recipe from a randomly generated list of recipes.
Second, we develop a knowledge-based recommender system in which users indicate their
preferences for recipes based on a set of attributes, such as cooking time and difficulty. We
expect that user choices might be affected by the use of labels, and the evaluation depends on
the interplay between user knowledge levels and either the labels or PE methods used. We
formulate the following research questions:

• RQ1: To what extent do different nutrition labels support healthier recipe choices?
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• RQ2: Does the user evaluation of a recipe recommender system depend on the interplay
between food knowledge and different preference elicitation methods?

2. Related Work

2.1. Food Recommender Systems

The field of recommender systems has received considerable research attention due to the
complex and fundamental nature of food [6, 2]. However, most studies have focused on im-
proving prediction accuracy [9]. To this end, various techniques have been explored. While
content-based approaches are initially found to outperform other methods (e.g., collaborative,
knowledge-based) [7], collaborative filtering has also yielded better results in other studies [2].

A recurring problem is to support healthier food and recipe choices. There is an apparent
tradeoff between ‘user preferences’ and health in recipe recommendation [6], particularly due to
the popularity of unhealthy recipes [1]. Rather than restricting content based on health, various
studies have examined hybrid solutions (e.g., through post ranking on health [18]) and interface
solutions. For example, multi-list interfaces have been developed to support healthier eating
goals, where multi-list recommenders are evaluated more favorably than single-list interfaces
[5].

Nonetheless, very few studies have explored the impact of preference elicitation methods on
user evaluation, particularly not in relation to a user’s knowledge level. Research that presents
novel preference elicitation (PE) methods typically involve conversational recipe recommenders
[19]. For example, two studies have compared the effect of using different modalities on user
choice or evaluation [20, 21]. While these modalities might affect how a user experiences an
interaction or even what item is chosen, these modality types seem to bear no relation to a
user’s knowledge level. Thus, the current study aims to fill this gap by empirically examining
the effects of different preference elicitation methods and subjective food knowledge on the
user experience.

2.2. Adaptive Preference Elicitation Methods

Across all recommender domains, several preference elicitation (PE) approaches have been
proposed and evaluated [2]. One of the earlier works in the food domain was [7], following a
rather simplistic procedure where recipe ratings are obtained from users and transferred into
ingredient ratings. While the user could still interact with individual recipes (as also in [22]),
the system then aggregated the ratings of the ingredients to generate rating predictions.

More extensive approaches would include user preferences for individual recipes and at-
tributes. Elahi et al. [23] consider additional factors when building a recommendation model,
by including user food preferences, nutritional indicators, and ingredient costs. This results in
a model that combines the predicted value of a recipe along with the above-noted factors to
generate recommendations.

Food recommender studies do not explicitly discern between PE methods. In the end, most
methods are simply a requirement for following a specific recommender model. Knowledge-
based food recommender studies elicit extensive recipe attribute preferences [14, 24], while
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content-based and collaborative approaches can deal with interactions at the individual recipe
level. To date, besides a preliminary study [22], it has not been considered that specific users,
based on their knowledge or capabilities, may prefer specific PE methods or require specific
information to be presented in a food recommender interface.

The interplay between user characteristics and PE methods is investigated in the energy
conservation domain. Knijnenburg and Willemsen [10] compare two preference elicitation
methods for a household energy recommender system. Users of a case-based PE method
could indicate to (dis)like individual energy-saving measures (e.g., ‘turn off the lights after
leaving a room’). In contrast, users of an attribute-based PE method could either decrease or
increase the weights of different energy-saving attributes, such as ‘investment costs’ or ‘effort’.
They find, also in follow-up studies [13], that users with high domain knowledge are more
satisfied when using an attribute-based PE method, while users with lower domain knowledge
prefer case-based PE. As food PE methods can also be differentiated in terms of interacting
with individual recipes (i.e., case-based, such as in content-based recommendation) and recipe
features (i.e., feature-based, such as in knowledge-based recommendation), we expect to observe
an interaction effect between food knowledge and the PE method on how a recommender is
evaluated.

2.3. Nutrition Labels and Digital Nudging

Nutritional information about food and recipes might not always be apparent to users. This is
another area where the user’s domain knowledge may affect their preferences, particularly in
cases where it is either emphasized or not.

One way to communicate the healthiness of foods and recipes is through nutrition labels [17].
One category is back-of-package labels that outline the nutritional contents of a food product in
detail [25]. Another category is front-of-package (FoP) labels that are used for both products and
recipes, which typically summarize the product’s or recipe’s nutritional content. For example,
this could be by highlighting specific nutrients of aggregating nutrition information towards a
score [17, 25].

The health benefits of such FoP labels have been shown longitudinally, supporting healthy
food intake [26]. While a growing body of evidence supports the effectiveness of FoP nutrition
labels in promoting healthy food choices in physical settings, the impact of nutrition labels in
digital contexts has been relatively understudied [16]. In particular, little is known about the
effectiveness of FoP labels in personalized environments [27].

FoP labels can be regarded as a digital nudge, a change in an interface that leads to predictable
choices [28]. More specifically, such a label is a cognitively oriented healthy eating nudge [15],
as users are encouraged to re-consider their preferences and choices based on deliberation.
Some of these labels, such as the Multiple Traffic Light (MTL) label, is also accompanied by a
coloring system, which supports intuitive decision-making [29].

Various digital nudges mainly relate to interface aspects of food recommenders. For example,
visual and textual explanations have been shown to shift user preferences towards healthier
recipes [30, 24]. This study mainly builds upon earlier work where ‘boosting’ is examined to
first explain FoP labels to users, after which recipes are annotated with them [22]. This has led
to a higher proportion of healthier choices in the recommender interface. Instead of applying
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‘boosts’ in this study, we seek to examine the effectiveness of two cognitive, informational
nudges. To examine the differentiating effect of user knowledge when combined with nudges,
we either annotate recipes with back-of-package labels (i.e., Nutritional Facts label1) or Multiple
Traffic Light (MTL) labels [31]. We expect that users with higher levels of domain knowledge
are better able to understand the full back-of-package label, compared to the MTL label also
being appropriate for low-knowledge users.

2.4. Objectives

We extend previous work of food recommender systems [6], by examining the role of preference
elicitation methods and digital nudges (through nutrition labels) [28, 10, 13]. First, we investigate
how different labeling systems can facilitate healthier decision-making when selecting recipes
(RQ1). We compare two label-based scenarios (with either an MTL label or a ‘full’ back-of-pack
label) with a no-label baseline, focusing on the interplay between labels and the preference
elicitation method and how this affects the user’s evaluation. In doing so, we also consider a
user’s knowledge level and the preference elicitation method.

Second, we examine the impact of the interplay of user knowledge and preference elicitation
methods on user choice and evaluation. We differentiate between two methods, content-based
and knowledge-based, being ‘case-based’ or ‘attribute-based’ PE methods, respectively; in line
with Knijnenburg et al. [13]. For the content-based approach, users are asked to indicate
whether they like individual recipes, while the knowledge-based approach elicits preferences
based on recipe features and personal characteristics, such as cooking time and self-reported
weight goals. In line with Knijnenburg and Willemsen [32], we used Structural Equations
Modeling (SEM) to construct a path model, in which changes to the recommender were related
to perception aspects and, in turn, experience aspects.

3. Study Design

3.1. Dataset

To address our research questions, we used a dataset from the popular recipe website All-
recipes.com. From the larger corpus of 58,000 recipes, we sampled 5,000 recipes from different
food categories for the main dish. In addition to the recipe title, all nutrients required to build
the recommender were extracted.

3.2. Recommender Approaches

We employed two recommendation approaches, both of which rely on explicit preference
elicitation methods [9].

3.2.1. Content-based (CB)

The content-based recommender system generated recommendations based on similarity with
recipes liked by the user. It employed the Term Frequency-Inverse Document Frequency (TF-

1https://www.fda.gov/food/new-nutrition-facts-label/how-understand-and-use-nutrition-facts-label

https://www.fda.gov/food/new-nutrition-facts-label/how-understand-and-use-nutrition-facts-label
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IDF) model to generate personalized recommendations based on the recipe’s ingredients. The
ingredient list was vectorized, operationalizing TF as the weight (per 100g) present in the
recipe. To build a user model in our study, we presented a list of 10 recipes to the user that
included detailed descriptions of their ingredients, pictures, servings, and calorie information.
For computing the final recommendations for the user, we computed similarities between the
user and item profile, employing a cosine similarity metric and the ingredient vectors (cf. [14]).
This method adhered to the standard methods in food recommender systems and had been
shown to generate decent results in the domain of food recommendations where no collaborative
filtering is possible [33].

3.2.2. Knowledge-based (KB)

We developed a knowledge-aware recommender system that extended the work of Musto et al.
[14]. An overview of elicited features is described in Table 1. Users were asked to disclose
personal characteristics and practical and health-related preferences related to recipes. A
score-based ranker used encoded knowledge relations between user factors and recipe features
to recipes, based on the user’s profile. The scores are adjusted based on metadata such as
ingredients or nutritional value. Table 1 also presents the rules to score recipes based on the
user needs, which is among others based on information found in [34, 35, 36, 24].

Table 1
User Factors and rules to score and generate relevant recipes. The recipes were subject to three groups
(higher, normal, and lower value) based on the average values of nutritional and practical aspects.

User factor Ranges Recipe attributes affected

BMI
< 18 higher calories, higher protein, higher carbohydrates
18-24 normal calories
> 24 lower calories, lower fat

Eating Goals
lose weight lower calories, higher protein, higher carbohydrate
neutral normal calories
gain weight higher calories, lower fat

Behaviours > 30min/day activity higher protein, higher calories

Sleep < 7h hours higher magnesium, higher vitamin B6, lower fat, higher protein

Depressed feelings yes/no higher protein, lower carbohydrates

Cooking experience high, medium, low number of instructions, number of ingredients

Cooking time 30 min, 40-60 min, > 60 min preparation time, number of ingredients

3.3. Research Design and System Procedure

The participants were assigned to a between-subjects design with a 2 (Preference Elicitation
(PE): Content-Based (CB) vs. Knowledge-Based (KB)) x 3 (labeling systems: no label vs. Multiple
Traffic Light (MTL) vs. Full label) configuration. In the content-based method, users selected
their preferred recipe from randomly generated options, while the knowledge-based condition
involved users providing health and food-related information. Personalized recipes were then
labeled with: No label, MTL label, or Full labels, as depicted in Figure 1 (A-C).
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A
Fiery Fish Tacos with Crunchy Corn Salsa

Select Recipe

Servings Serving Size
8 300 (g)

0.30g
Low

Fat
15.30g
Medium

Sat Fat
4.60g
Medium

Sugar

Fiery Fish Tacos with Crunchy Corn Salsa

Select Recipe

Servings Serving Size
8 300 (g)

Cal
351
Kcal

Salt
0.53g
Low

C
Fiery Fish Tacos with Crunchy Corn Salsa

Select Recipe

Servings Serving Size
8 300 (g)

B

Figure 1: An example of personalized recipes annotated with No label (A), Multiple Traffic Light label
(B), or Full label (C).

We implemented a user flow that started with obtaining consent from the study participants.
The whole online user study flow is illustrated in Figure 2. Once the participants agreed to take
part in the study, they provided basic demographic information, including age group, education
level, and gender. Information processing was in line with Ethical guidelines at University of
Bergen, Norway. In both the content and knowledge-based conditions, the choice task and
evaluation questionnaire were similar, with users choosing a single preferred recipe from the
list of recommended items (top-10 list). In both conditions, recipes were labeled either with an
MTL label, a Full label or no label. Finally, the participants evaluated the system based on the
performed choice regarding satisfaction, difficulty, and effort.

Personal 
information

Choice & 
evaluationSubjective Food 

Knowledge

Recipe choice

Health and practical 
needs

CB: Personalized 
recipes with MTL 

label

CB: Personalized 
recipes with No-

label

CB: Personalized 
recipes with Full 

label

KB: Personalized 
recipes with No-

label

KB: Personalized 
recipes with MTL 

label

KB: Personalized 
recipes with Full 

labelKnowledge-based (KB) 
recommendations

Content-based (CB) 
recommendations

Figure 2: The User flow for the online experiment.

3.4. Participants

We utilized the Prolific crowdsourcing platform to recruit users for our study, offering 0.80 GBP
as compensation. A total of 360 participants took part in the study. However, after pre-screening
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the data, we had to exclude 54 participants. Grounds for exclusion were based on multiple
violations of non-attentiveness: not disclosing realistic knowledge-based criteria (e.g., a weight
of 15kg), providing uniform responses in the user evaluation questionnaires, and/or completing
the study in under 2 minutes. Our final analysis was performed on a sample of 306 (65% female)
participants split equally on study conditions, with an average age of 30.5 years.

3.4.1. Ethical Statement

This research adhered to the ethical guidelines of the University of Bergen and the Norwegian
guidelines for scientific research. It was judged to pass without further extensive review, for it
contained no misleading information, stress tasks, nor would it elicit extreme emotions.

3.5. Measures

3.5.1. Recipe Healthiness

To determine the healthiness of the recipes in our dataset, we utilized the FSA score. It was
introduced by the UK Food Standards Agency [31] and is considered a reliable measure to
estimate recipes’ healthiness. It was successfully used in multiple human-computer interaction
and recommender systems studies on recipes [1, 22, 20, 18]. The metric represented an inverse
healthiness score and ranged from 4 (very healthy) to 12 (not healthy). It was based on the
levels of fat, saturated fat, sugar, and salt per 100g in a recipe, adhering to nutritional intake
guidelines. For our algorithmic sampling, we classified recipes as healthy up to a score of 8,
while higher scores were designated as unhealthy.

3.5.2. Food knowledge and user evaluation

To measure the users’ nutritional knowledge levels, we employed the Subjective Food Knowledge
(SFD) questionnaire, which was validated in prior studies [37, 38]. The SFD questionnaire
comprised five items, that are rated on a five-point Likert scale.

A user’s experience of using our system was assessed through the recommender system
evaluation framework Knijnenburg and Willemsen [32]. For this study, we expected changes
in terms of how effortful a user perceived the interaction to be, while also inquiring on two
different choice outcomes: choice difficulty and choice satisfaction. These two experience
aspects are commonly used to evaluate recommender interactions [32, 13]. All questionnaire
items b used for the user evaluation were previously validated in relevant domains through
earlier studies: for perceived effort [39], choice difficulty [40, 5], and choice satisfaction [12, 5].

All items were submitted to a confirmatory factor analysis. Subjective food knowledge was
analyzed separately to allow for interaction effects, while the other aspects were inferred as part
of a structural equation model analysis. Table 2 describes the factor loadings and Cronbach’s
Alpha, showing that items with low loadings (indicated in grey) were excluded from the analysis.
All aspects adhered to internal consistency guidelines (𝛼 > .70), while they also met guidelines
for convergent validity based on the average variance explained (𝐴𝑉 𝐸 > 0.5).
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Table 2
Results of the confirmatory factor analysis across different user characteristics and experience aspects.
Items were measured on 5-point Likert scales. To allow for interaction effects in the path model,
subjective food knowledge was analyzed separately. Cronbach’s Alpha is denoted by 𝛼, items in gray
were omitted from analysis, due to low factor loading .

Aspect Item Loading

Subj. Food Knowledge

𝐴𝑉 𝐸 = .744
𝛼 = .872

Compared with an average person, I know a lot about
healthy eating.

.836

I think, I know enough about healthy eating to feel pretty
confident when choosing a recipe.

.879

I know a lot about food to evaluate the healthiness of a
recipe.

.847

I do not feel very knowledgeable about healthy eating. -.887

Choice Satisfaction
𝐴𝑉 𝐸 = .616
𝛼 = .795

I like the recipe I have chosen. .750
I think I will prepare the recipe I have chosen. .637
The chosen recipe fits my preference. .746
I know many recipes that I like more than the one I have
chosen.
I would recommend the chosen recipe to others. .681

Choice Difficulty
𝐴𝑉 𝐸 = .554
𝛼 = .659

I changed my mind several times before making a deci-
sion.
Making a choice was overwhelming. .766
It was easy to make this choice. -.549

Perceived Effort
𝐴𝑉 𝐸 = .504
𝛼 = .632

The system takes up a lot of time. .851
I quickly understood the functionalities of the system. -.683
Many actions were required to use the system. .557

4. Results

We examined our research questions through two different analyses. First, we examined the
healthiness of user choices (RQ1) through a two-way ANCOVA, predicting the FSA score based
on our research design. Second (RQ2), we investigated how users evaluated different labels
and preference elicitation (PE) methods through Structural Equation Modelling, also assessing
mediated relations. This analysis was performed in line with the recommender system user
experience framework [32], relating our research design (objective system aspects) to user
perception (effort) and experience (choice difficulty and satisfaction) while considering user
characteristics (food knowledge) and behavior (healthiness of recipes chosen).

4.1. RQ1: Healthiness of Chosen Recipes

We predicted the FSA score of chosen recipes based on the labels presented and the user
preference elicitation method. We also included food knowledge as a covariate and examined
possible interaction effects with PE or labels, but did not observe any. Descriptive statistics
indicated 64% of recipes were chosen in the MTL condition, compared to the 54% for the full
labeling system.
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The results of the two-way ANCOVA are presented in Table 3. The FSA score of chosen recipes
was found to not significantly depend on the type of nutritional label presented: 𝐹 (2, 299) =
2.93, 𝑝 = 0.055. As the relatively small 𝑝-value shows, we did observe small differences
across conditions, where the healthiest choices were made when facing MTL labels (𝑀𝐹𝑆𝐴 =
7.17, 𝑆𝐷𝐹𝑆𝐴 = 2.01), while scores were higher in the baseline (𝑀𝐹𝑆𝐴 = 7.64, 𝑆𝐷𝐹𝑆𝐴 =
2.01), and the full label condition (𝑀𝐹𝑆𝐴 = 7.70, 𝑆𝐷𝐹𝑆𝐴 = 2.05). However, these were not
significant, suggesting that in a personalized choice context, cognitively oriented labelling
nudges could not further support healthier recipe choices.

Table 3
Results of two-way ANCOVA tests, predicting the healthiness of chosen recipes across different labeling
conditions and preference elicitation methods. Food knowledge was added as a covariate. ***𝑝 < .001,
**𝑝 < .01, *𝑝 < .05.

Factor (FSA score) df F

Model 6 4.14**

Nutrition labels (No Label-MTL-Full label) 2 2.93
Preference Elicitation (CB-KB) 1 8.30**

Labels * Preference Elicitation 2 .75
Food Knowledge 1 8.61**

We did observe that the preference elicitation method employed had a significant effect on
the healthiness of choices made. Participants using the knowledge-based method (𝑀𝐹𝑆𝐴 =
7.14, 𝑆𝐷𝐹𝑆𝐴 = 2.03) made healthier choices than those using a content-based approach
(𝑀𝐹𝑆𝐴 = 7.85, 𝑆𝐷𝐹𝑆𝐴 = 1.98): 𝐹 (1, 299) = 8.30, 𝑝 = 0.004. This suggested that a
knowledge-based PE allowed users to find recipes more easily. Our analysis further revealed that
there was no significant interaction effect between the type of labels used and the preference
elicitation method employed, which is also depicted in Figure 3. Finally, the two-way ANCOVA
also revealed a relation between food knowledge and the FSA score, indicating that users with
higher levels of food knowledge made healthier choices (𝑟(306) = −.17).

4.1.1. Conclusion

We found that annotating personalized recipes with either a Multiple Traffic Light or a Full
label did not significantly lead to healthier recipe choices. Although previous studies suggested
the possible merit of labels in recommender systems [27, 22], we only observed a small, non-
significant (𝑝 = 0.054) improvement, particularly when using a front-of-pack Multiple Traffic
Light label. In contrast, the full, back-of-pack nutrition facts label led to similar outcomes as
in the baseline. As no interactions with food knowledge were found, this suggested that such
cognitive digital nudges are less effective in a personalized recommender context, and choice
outcomes do not depend on a label’s understandability.

We did observe that a knowledge-based preference elicitation (PE) method led to healthier
recipe choices. This indicated that a knowledge-based PE method could support users to
make healthier choices, particularly by generating healthier recommendations as a translation
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Figure 3: Mean FSA scores (i.e., inverse healthiness scores) of chosen recipes, across different conditions.
Error bars depict 1 S.E.

to the user greater control in guiding the recommendations process in this recommender
approach. Moreover, users with higher food knowledge made healthier choices. Although we
did not observe any interaction effects on choice, we explored this relationship again in the
next subsection, examining the interplay between knowledge level, PE methods and labelling
conditions on perception and experience aspects.

4.2. RQ2: User Evaluation and Preference Elicitation Methods

To examine how users evaluated different interaction methods and interface nudges based on
their knowledge level, we formed a Structural Equation Modeling (SEM). All objective and
subjective aspects, along with user characteristics and interaction metrics, were organized in
a path model. Following the guidelines by Knijnenburg and Willemsen [32], we first fitted
a fully saturated model, organizing the path from objective aspects (i.e., the conditions) to
perception (i.e., effort) and experience aspects (i.e., choice difficulty and satisfaction), after
which non-significant relations were omitted.

The resulting model is presented in Figure 4, showing a good fit: 𝜒2(94), 𝑝 < .01, 𝐶𝐹𝐼 =
.963, 𝑇𝐿𝐼 = .955, 𝑅𝑀𝑆𝐸𝐴 = .038, 90%-CI: [.022; .052]. The model met the guidelines for
discriminant validity, as the correlations between latent constructs were smaller than the square
root of each construct’s Average Variance Explained (AVE). Please note that the chosen FSA
score was included in our analysis, but it was not related to any mediated path.

Figure 4 depicts two paths towards choice satisfaction, stemming from the objective aspects.
First, we observed an interaction effect between the use of an MTL label and a user’s subjective
food knowledge, in addition to a main effect of MTL. These effects be best explained through
the marginal effects plot in Figure 5. We found that people facing MTL labels were on average,
less satisfied with the recipe they had chosen than users in our conditions (𝑐𝑜𝑒𝑓. = −1.412,
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Figure 4: Structural Equation Model (SEM). Numbers on the arrows represent the 𝛽-coefficients, and
standard errors are denoted between brackets. Effects between the subjective constructs are standardized
and can be considered as correlations. Other effects show regression coefficients. Objective system
aspects are purple, perception aspects are green, and experience aspects are orange. User characteristics
are red. ***𝑝 < .001, **𝑝 < .01, *𝑝 < .05.

𝑝 = 0.017). However, the interaction effect with food knowledge showed that this particularly
applied to users with low knowledge levels, as choice satisfaction significantly increased among
users with a higher knowledge level facing MTL labels (𝑐𝑜𝑒𝑓. = .547, 𝑝 = 0.041).
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Figure 5: Standardized score for choice satisfaction across different labeling conditions and subjective
food knowledge levels. Errors bars represent 1 S.E.

The path towards perceived effort stemmed from the interaction between the PE method
and food knowledge. Higher levels of food knowledge led to lower levels of perceived effort
among those facing a knowledge-based recommender (𝑐𝑜𝑒𝑓. = −.436, 𝑝 < .05). To better
understand this effect, please inspect Figure 6a, which depicts a two-sided interaction effect. For
a KB recommender, effort was slightly reduced for users with higher knowledge levels. For a CB
recommender, in contrast, perceived effort increased among users with higher knowledge levels.
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Figure 6: Standardized Scores for Perceived Effort (a) and Choice Satisfaction (b), across different
preference elicitation (PE) methods and subjective food knowledge levels. Errors bars represent 1 S.E.

This suggested that the perception of recommender use depended on the interplay between
knowledge and the PE method, in line with [13].

The perceived effort, in turn, affected the experience aspects. We observed a positive rela-
tionship between effort and choice difficulty (𝑐𝑜𝑒𝑓. = .496, 𝑝 < .001), suggesting that effortful
interactions were also related to harder decision-making processes. The full path towards choice
difficulty, as depicted in Figure 4, shows that effort decreased due to the interplay between
knowledge-based PE and knowledge, which in turn was related to choice difficulty. However, a
test of indirect effects did not reveal significant support for a path towards choice difficulty that
was fully mediated by perceived effort: 𝛽 = −.216, 𝑝 = .053, even though a lack of statistical
power may have undermined this test.

Finally, we observed a negative relation between choice difficulty and choice satisfaction
(𝑐𝑜𝑒𝑓. = −.415, 𝑝 < .001). This relation was observed in various previous studies (cf. [32]), but
here it highlighted that the effects of the interplay between the PE method and user knowledge
affected different evaluative aspects. Figure 6b provides a visual representation of these effects,
indicating that knowledge-based users were more satisfied if they had higher knowledge levels
and vice versa for users of content-based recommenders. We examined whether the path
towards choice satisfaction was fully mediated by perceived effort and choice difficulty, but we
found no support: 𝛽 = .090, 𝑝 = .063.

4.2.1. Conclusion

We examined the evaluative effects of the interplay between the preference elicitation (PE)
method (i.e., content-based or knowledge-based) and user knowledge, operationalized as sub-
jective food knowledge. In doing so, we also explored the interaction effects between labels
and user knowledge. Our results revealed two ways in which choice satisfaction was affected.
First, users facing MTL labels tended to be more satisfied with their choices if they had a higher
knowledge level, while satisfaction levels were slightly lower on average for MTL. On the one
hand, this showed the importance of considering domain knowledge in the evaluation of a food
recommender system, similar to [10]. On the other hand, it showed that although users of MTL
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labels seemed to make slightly healthier choices (but not significantly so), it might have come
at the cost of choice satisfaction.

The second main finding concerned the interplay between subjective food knowledge and
the PE method. We found that both the perception and the experience of using the system
depended on this interaction effect. Users with higher levels of domain knowledge evaluated
a recommender more positively if it allowed them to disclose personal characteristics and
feature-based preferences, as was done for the knowledge-based PE. In contrast, users with
comparatively low levels of domain knowledge evaluated the recommender more positively
when facing a content-based method. Although the fully mediated path method was significant,
this ‘crossed’ interaction effect was observed for all of the evaluative aspects.

Overall, this study showed that effective personalization in food recommender systems goes
beyond algorithmic optimization. In fact, the design of the recommender, in terms of nudges
and PE methods, seemed to require careful consideration of the user’s knowledge level. This
support the calls for adaptive preference elicitation methods [10].

5. Discussion

For many years, food recommender systems have fallen in line with traditional recommender
approaches, focusing on algorithmic optimization. This paper has built upon research in which
the interaction methods and interface aspects of a recommender are adapted to support specific
user choices [13]. We have singled out the role of a user’s level of domain knowledge, for it may
affect not only how recommendations are evaluated, but also what types of interface aspects and
interaction methods are appropriate. In doing so, we have focused on the one hand on cognitive
food nudges [15], in the form of nutrition labels. On the other hand, we have examined the role
of the recommender’s preference elicitation method [10, 13], regarding it as a possible barrier
for some users to due to either its complexity (knowledge-based) or simplicity (content-based).

We have set out with two research goals, examining two dimensions of a food recommender
system. Firstly, we sought to investigate whether food nutritional labels support recipe rec-
ommender users in making healthy food choices. Secondly, we have examined the interplay
between subjective food knowledge and preference elicitation methods on the user’s perception
and experience in a food recommender system [32], being the first to do so in this domain.

The first main contribution of this paper (RQ1) indicates that annotating personalized recipes
with MTL labels or Full labels does not significantly affect the healthiness of recipes chosen by
users. This finding falls in line with previous research in food recommender research [27, 22],
which found that boosting nutritional food labels is the best way to help users make healthier
food choices in a personalized interface, rather than using nudges only. Hence, although digital
nudging in recommender systems has gained attention [28], its effectiveness might be limited
due to the personalized decision-making context.

Interestingly, our study also reveals that a knowledge-based PE method (and subsequent
recommender) leads to healthier outcomes than a more simple content-based recommender. It
is possible that simply allowing users to reflect on their own preferences and needs leads to
healthier outcomes than relying on recipe ingredients and images only. In the context of the
psychological dual-process thinking [29], knowledge-based recommenders might encourage
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system-2 thinking, involving extensive and conscious deliberation, while content-based recom-
menders might elicit intuitive choices (based on system-1). This is consistent with the type of
nudges related to effect (e.g., adapting images [18]) and cognition (e.g., labels) [15]. This also
highlights the importance of considering user preferences and the interaction method, along
with nutritional education, when examining food recommenders.

The second main contribution concerns the interplay between the user’s nutritional knowl-
edge and the preference elicitation method. This interaction is shown to influence various
evaluative aspects of food recommender systems (RQ2). We find that users with higher levels
of food knowledge experience additional benefits when using a knowledge-based recommender
and vice versa for a content-based recommender. This has been operationalized into a path
model that includes perceived effort, choice difficulty, and choice satisfaction.

Our findings are largely consistent with the work done in the energy recommender system
domain [13]. That work differentiates between ‘case-based PE’ and ‘attributed-based PE’, which
we regard to be similar to our content-based and knowledge-based approaches, respectively.
Where both case-based PE and content-based PE (dis)like individual recipes, attribute-based
PE differs slightly from a knowledge-based recommender. In [10, 13], users had to make
tradeoffs between different energy-saving measure features but did not disclose any personal
characteristics. In a knowledge-based recommender, the interactions that involve disclosing
needs or personal preferences might have been easier to do, compared to some attribute-based
tradeoffs. Another difference is that we have not been able to relate the FSA score in our path
model to other aspects, while Knijnenburg et al. [13] also observe a relation between choice
satisfaction and the interaction metric ‘kWhs saved’.

Another striking finding from our structural equation model is that the evaluation of different
labels depends on user knowledge. Where we expected this to be strongest for the full label due to
its complexity, we have observed a positive interaction between domain knowledge and the use
of an MTL label on choice satisfaction. It seems that the comparatively simple front-of-package
label [16] still requires a significant level of understanding to be used satisfactorily.

5.1. Limitations and Future Work

A few limitations might confound parts of this paper. Unfortunately, we have had to exclude
around 15% of our participants due to one or more issues regarding non-attention. The fact
that this group is rather large could suggest that more users have not engaged with the recom-
mended content with much deliberation. Intuition-based decisions could have undermined the
effectiveness of our cognitive labeling nudge [15]. Nonetheless, since we have observed some
differences regarding labels in terms of choice and evaluation, we argue that a sufficient number
of participants is still part of this study’s analysis sample. This also applies to use of Structural
Equation Modelling, for which we had a sufficient number of degrees of freedom [41].

The recommender in this study has focused on dinner recipes. Although this is quite a
common approach for recipe recommendation [27, 24, 5, 1], it is challenging to assess the
implications or a slightly (un)healthier dinner meal if nothing is known about the daily dietary
intake of a user. For example, it could be that a person eats relatively healthy dinner meals but
has numerous eating moments a day, thereby exceeding the caloric intake limit. We advocate
for extending this recommender approach towards meal plans for the day, possibly mixing
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recipe recommendations with food product recommendations.
Another limitation, which is shared with many food recommender studies [2], is that we have

not checked whether people actually cooked the food. In that sense, the choices made in this
study can only be regarded as behavioral intention. Although some commitment mechanisms
may take place that may support actual engagement with chosen recipes, we would encourage
performing a follow-up study that considers longitudinal aspects as well. An increasing number
of health-based personalized advice applications are developed [8], among others using Digital
Twins as a means of user profiling to suggest meal plans or exercise behavior. Overall, it is
important to examine whether adaptations in a recommender interface can spill over into
longer last effects. For instance, a knowledge-based recommender can only be regarded as being
effective in supporting healthier choice if these last over the course of a few weeks.
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