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ABSTRACT
In recent years, several successful tag recommendation mechanisms
have been developed that, among others, built upon Collaborative
Filtering, Tensor Factorization, graph-based algorithms and simple
“most popular tags” approaches. From an economic perspective,
the latter approach has been convincing as calculating frequencies
is computationally efficient and has shown to be effective with re-
spect to different recommender evaluation metrics. In order to ex-
tend these conventional “most popular tags” approaches we intro-
duce a tag recommendation algorithm that mimics the way humans
draw on items in their long-term memory. Based on a theory of
human memory, the approach estimates a tag’s reuse probability as
a function of usage frequency and recency in the user’s past (base-
level activation) as well as of the current semantic context (associa-
tive component).

Using four real-world folksonomies gathered from bookmarks
in BibSonomy, CiteULike, Delicious and Flickr, we show how re-
fining frequency-based estimates, by considering recency and se-
mantic context, outperforms conventional “most popular tags” ap-
proaches and another existing and very effective but less theory-
driven, time-dependent recommendation mechanism. By combin-
ing our approach with a resource-specific frequency analysis, our
algorithm outperforms other well-established algorithms, such as
Collaborative Filtering, FolkRank and Pairwise Interaction Ten-
sor Factorization with respect to recommender accuracy and run-
time. We conclude that our approach provides an accurate and
computationally efficient model of a user’s temporal tagging behav-
ior. Moreover, we demonstrate how effective principles of recom-
mender systems can be designed and implemented if human mem-
ory processes are taken into account.

This is a pre-print of the paper “Modeling Activation Processes in Human
Memory to Predict the Use of Tags in Social Bookmarking Systems” ac-
cepted for publication in The Journal of Web Science. The final published
version might look slightly different in style and content.
.
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1. INTRODUCTION
One of the goals of Web Science as a new discipline is to un-

derstand the dynamics of human behavior and social interactions
that shape the Web into a vast information network of content and
people. As the Web evolves into a platform through which peo-
ple interact with each other, communicate and express themselves,
models of human behavior can shed light on why the Web forms as
it does, and contribute to improving its underlying mechanisms. In
this paper, we exemplify this idea in the context of social tagging.
In particular, we show that a well-established model of human cog-
nition both provides a good account of how people use tags and
allows implementing an accurate and efficient tag recommendation
mechanism.

When users categorize and tag resources on the Web (e.g., pho-
tos), they draw on their semantic-lexical memories to retrieve cor-
responding memory units. For instance, they might add the tag
“Paris” as the photo shows the place they recently visited. Un-
derstanding the cognitive processes involved can help to predict
individual tagging behavior [53] and to model phenomena on the
collective level, such as the emergence of stable tag distributions
[13]. To make appropriate memory units quickly available, human
memory is very adaptive and tunes the activation of its units to sta-
tistical regularities of the environment (e.g., [4]): The more useful
a memory unit has been and the stronger it is related to the current
context (i.e., environmental cues), the higher is its activation level
and hence, probability of being retrieved.

We assume that these activation processes also determine a user’s
tagging behavior and that the usage probability of a tag can be de-
rived from estimates of its activation in the user’s memory. Ac-
cording to [2], the activation of a tag should depend on at least
two variables: i) the general usefulness of a tag in a user’s tag-
ging history and ii) its associations to the current context, i.e., to
elements of the resource to be tagged. This means that a memory
unit (e.g., the tag “recommender”) is more likely to be brought into



consciousness, if we use it often and if it fits the current topic (e.g.,
“webscience”). In the next subsection, we present a simple formal-
ism, which allows for a psychologically meaningful calculation and
combination of the two variables of usefulness and context. As we
will show below, this formalism helps to identify gaps in the cur-
rent recommender research, namely to reconsider recent attempts
to introduce time-dependent dynamics into recommender systems
[62, 64]. We also show how this simple mechanism improves pre-
dictions of individual tagging behavior and how it can be used to
design and implement an accurate and efficient recommendation
mechanism.

1.1 Formalizing the Activation of Memory
Units

Consider a user retrieving a unit from his/her memory, such as
a tag that he/she has used previously. To derive its usefulness in
the current context, we determine the activation Ai of this unit of
memory i. According to the following activation equation, which is
part of the declarative module of the cognitive architecture ACT-R
(e.g., [2]), the usefulness is given by:

Ai = Bi +
∑
j

Wj · Sj,i︸ ︷︷ ︸
AssociativeComponent(AC)

(1)

TheBi component represents the base-level activation and quan-
tifies the general usefulness of a unit i by considering how fre-
quently and recently it has been used in the past. It is given by
the base-level learning (BLL) equation:

Bi = ln(

n∑
j=1

t−d
j ) (2)

, where n is the frequency of the unit’s occurrences and tj is the
recency, i.e., the time (in seconds) since the jth occurrence. For
example, if a user has applied the two tags “recognition” and “rec-
ommender” with equal frequency but “recommender” has domi-
nated the user’s recent bookmarks1 the equation predicts a higher
activation for “recommender”. The exponent d accounts for the
power law of forgetting that each unit’s activation caused by the
jth occurrence decreases in time according to a power function [2].

The second component of equation 1 represents the associative
activation that tunes the base-level activation of the unit i to the
current context. The context is given by any contextual element j
important in the current situation (e.g., the tags “memory” and “rec-
ollection”). Through learned associations, the contextual elements
are connected with tag i and can increase i’s activation depending
on the weight Wj and the strength of association Sj,i. To simplify
matters, we use the tags associated with a given resource r (due to
previous tag assignments of other users) as the contextual elements.
We derived Wj from the number of times tag j has been assigned
to r, and Sj,i from the number of co-occurrences between the tags
i and j. Section 4 contains a more detailed and formal description
of all calculation steps.

1.2 Research Questions
The introduction of the activation equation to model retrieval of

tags from memory leads us to a number of research questions. First,
equation 2 models time-dependent decay, i.e., the effect of recency
on a memory unit’s activation, according to a power law. When
1In this paper we refer to a bookmark as a user’s post of an URL
and corresponding tag assignments to a social tagging system.

looking at recent tag recommendation models which take into ac-
count the time-dependent dynamics, they formalize the recency of
tag use by means of linear [22] or exponential decay functions [65].
Whereas a linear function can be rejected for theoretical reasons
(e.g., [4]), and from 100 years of empirical research into human
memory (e.g., [11]), it is not clear whether an exponential or power
law provides a better account of time-dependent decay in the use of
tags. In Section 3 we therefore investigate the question:

• RQ1: Is an exponential or power decay function more ap-
propriate to account for the effect of recency on a tag’s reuse
probability?

Experiments have shown that a substantial amount of tag assign-
ments can be explained by modeling the strength of memory traces
of tags [53]. Hence, given equations 1 and 2 correspond with in-
dividual tagging behavior, we assume that their formalism can also
be used to predict a user’s future tag reuse. To examine this as-
sumption, we followed a two-stage approach. First, since equation
2 formalizes a fundamental memory process in a very efficient, i.e.,
computationally effortless way, we wanted to explore its tag reuse
prediction accuracy independent of the associative activation com-
ponent. Hence, the second question is:

• RQ2: Does the base-level learning (BLL) equation provide a
valid model of a user’s tagging behavior in the past to predict
future individual tag assignments?

Furthermore, given equation 2 allows for accurate tag reuse pre-
diction, we investigate the accuracy of equation 1 and raise the
question:

• RQ3: Does the additional consideration of the associative
component evoked by the current context further improve the
accuracy of the base-level learning (BLL) equation to predict
the individual tag reuse?

Finally, in order to realize a complete tag recommender that goes
beyond solely predicting individual tag reuse, we take the results
of RQ3 and combine the activation equation with popular tags that
have been applied to the target resource by other users. When also
considering other users’ tags, this allows us to introduce new tags
to the target user, namely tags that have not been used by the tar-
get user before (e.g., [37, 33, 29]). To this end, we weight these
tags based on their frequency in the resource’s tag assignments,
hereinafter referred to as MostPopularr (MPr). This allows us to
compare the performance of the combination of the activation equa-
tion and MPr with well-established approaches, such as Collabora-
tive Filtering (CF), FolkRank (FR) and Pairwise Interaction Tensor
Factorization (PITF) which leads to the fourth and final research
question of this work:

• RQ4: Can the whole activation equation, that considers base-
level and associative activation, be applied and extended to
create an effective and computationally efficient tag recom-
mendation mechanism compared to state-of-the-art baseline
approaches?

To summarize, the four research questions consider different lev-
els of complexity. While RQ1 only analyzes the past tagging be-
havior of a user (see Section 3), RQ2 and RQ3 predict the individ-
ual reuse of tags from the users’ previous vocabulary (see Section
6.1.1), without the current context (RQ2) as well as with the cur-
rent context (RQ3). Finally, RQ4 considers also the introduction of
new tags by imitating popular tags from other users, and thereby



allows us to compare our approach with current state-of-the-art tag
recommendation mechanisms (see Section 6.1.2).

The remainder of this paper is organized as follows: We begin
discussing related work (Section 2) and describing our empirical
analysis to tackle our first research question (Section 3). In Sec-
tion 4 we explain our approach. Section 5 describes the datasets,
the experimental setup and the baseline algorithms used for evalu-
ation. Section 6 addresses research questions 2 - 4 and summarizes
the settings and results of our extensive evaluation. Section 7 con-
cludes the paper by discussing our findings when deriving tag rec-
ommender mechanisms from empirical, cognitive research. This is
followed by a short outlook into our future work in Section 7.1.

2. RELATED WORK
Recent years have shown that tagging is an important feature of

the Social Web, supporting users with a simple mechanism to col-
laboratively organize and find content [26]. Although tagging has
demonstrated to significantly improve search [19, 9, 56] (and in
particular tags provided by the individual), it is known that users are
typically lazy in providing tags for instance for their bookmarked
resources. It is therefore not surprising that recent research is in-
vestigating personalized tag recommenders to support individual
user in their tag application process. To date, the two following ap-
proaches have been established: graph (collaborative) -based and
content-based tag recommender systems.

For the latter strand of research, the most recognizable work is a
study conducted by Heymann et al. [20]. The paper illustrates that
page-text is a significantly better predictor for the user’s social tags
than anchor-texts or surrounding hosts. This was explored within
the Stanford domain and for tags gathered from the bookmarking
system Delicious. Furthermore, there is the work of Marek et al.
[34, 35, 36] or Lin et al. [32] that show the same effect for page-
title and page-content. Another relevant and recent research in this
context has been contributed by Lorince and Todd [37], Floeck et
al. [12] and Moltedo et al. [41] who show on a theoretical and
empirical level that existing tags (such as for instance existing tag
clouds in LastFM) have influenced the way people generate their
own tags for a target resource.

Other related work (as pointed before) is the research on graph-
based approaches ranking the user’s individual tags for a target re-
source. The probably most notable research in this context is pre-
sented by Hotho et al. and Jaschke et al. [21, 23] who introduce an
algorithm called FolkRank (FR) which uses the structure of folk-
sonomies for searching and ranking. These rankings can also be
used to recommend tags. Subsequent studies of Marinho et al. [39,
23] or Hamouda & Wanas [17] show how the classic Collaborative
Filtering (CF) approach could be adopted for the recommendation
of tags. Significant studies of Rendle et al. [49], Wetzker et al.
[60], Krestel et al. [30] or Rawashdeh et al. [45] introduce a fac-
torization model, a Latent Dirichlet Allocation (LDA) model or a
Link-Prediction model, based on the Katz measure, respectively, to
recommend tags to users.

Although the latter mentioned approaches perform reasonably
well, they are computational expensive compared to simple “most
popular tags” approaches. Furthermore, they ignore recent obser-
vations with regard to social tagging systems, such as the variation
of the individual tagging behavior over time [63]. To that end, re-
cent research has made the first promising steps towards more accu-
rate graph-based models that also account for the variable of time
[62, 64]. The approaches have shown to outperform some of the
current state-of-the-art tag recommender algorithms.

In line with the latter strand of research, in this paper we present
a novel graph-based tag recommender mechanism that uses the ac-

tivation equation, which is based on the principles of a popular
model of human cognition called ACT-R (e.g., [2, 3]). We show
that the approach is not only very simple and straightforward but
also reveal that the algorithm outperforms current state-of-the-art
graph-based (e.g., [60, 21, 23]) and the leading time-based [64] tag
recommender approaches.

3. MODELING RECENCY EFFECTS IN SO-
CIAL TAGGING SYSTEMS

This section addresses our first research question as to whether
the effect of recency decays according to an exponential or a power
function. As described in Section 1, the same question has al-
ready been investigated in a different context (e.g., re-occurrence
of words in New York Times headings) by Anderson and Schooler
[4]. They found that the power function produces a better fit. Up to
now, research on tag-based recommender systems has not applied
a power function to model the temporal tagging patterns of users
(only linear or exponential ones, see e.g., [22, 65, 64, 63, 7]). We
therefore investigate, as to whether the results obtained by Ander-
son and Schooler [4] generalize to social tagging environments and
thus, explore if users’ tagging behavior justifies the application of
the base-level learning (BLL) equation.

We approached this question investigating time-dependent user
behavior in four representative dataset samples drawn from Bib-
Sonomy, CiteUlike, Delicious and Flickr (for details see Section
5.1). We sorted a user’s n bookmarks by time with the nth book-
mark being the most recently collected, and compared the tag as-
signments of her first n - 1 bookmarks with the nth bookmark. Per
user, we calculated the seconds elapsed since the last occurrence of
each of the user’s tags assigned to the n - 1 bookmarks. Addition-
ally, we determined which of the user’s tags had been reused in the
nth bookmark. To obtain a statistically reliable value, we pooled
all users’ tags with the same recency (seconds elapsed) and deter-
mined the proportion of tags reoccurring in the nth bookmark as
an estimate of the probability of future reuse.

In Figure 1, we plotted the estimated probability p(X) of tag
reuse in the nth bookmark against the number of seconds elapsed
for each of the four datasets. The four plots in Figure 1 test the
assumption of a power vs. exponential relationship by drawing the
log-log-transformed re-occurrence probability against the seconds
elapsed [4].

A glance at the plots in Figure 1 suggests that a power func-
tion might result in a better fit than the exponential function since
it follows somewhat a straight line in a log-log-transformed plot
(as suggested in [4]). To validate this hypothesis we made use of
the python package powerlaw [1] which implements the method of
Clauset et al. [8] to statistically quantify whether or not the ob-
served empirical data can be better explained via a power law than
an exponential function. As shown in Figure 1, in all four datasets
the estimated power function (see also best values of xmin and α)
provides a better fit for the data than an exponential function. To
test for statical significance, we calculated the loglikelihood ratio
R between the two observed functions and the empirical data as
proposed in [1], where R > 0 and p < .05 means that the data is
statistically more likely to follow a power distribution rather than
an exponential one. As presented in Figure 1 this is the case in all
four datasets. Note that the decay in Flickr is more pronounced than
in BibSonomy, which might imply that scientific topics in BibSon-
omy (e.g., recommender research) do not change as fast as topics
of photos of different leisure events (e.g., of the last weekend).

From this pattern of results we conclude that the findings re-
vealed by Anderson and Schooler [4] generalize to social tagging
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(a) BibSonomy (power vs. exponential fit)
Power law parameters: xmin = 72, α = 1.19

Loglikelihood ratio: R = 36.05, p < .001
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(b) CiteULike (power vs. exponential fit)
Power law parameters: xmin = 31, α = 1.26
Loglikelihood ratio: R = 246.08, p < .001
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(c) Delicious (power vs. exponential fit)
Power law parameters: xmin = 32, α = 1.19

Loglikelihood ratio: R = 60.92, p < .001
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(d) Flickr (power vs. exponential fit)
Power law parameters: xmin = 2, α = 1.25
Loglikelihood ratio: R = 117.55, p < .001

Figure 1: Power law vs. exponential fit (first research question) of the time-dependent decay (measured in seconds) of individual
tag reuse for BibSonomy, CiteULike, Delicious and Flickr. Parameters xmin and α of the fitted power function are also provided.
Furthermore, values forR and p (p-value forR) are represented which is the loglikelihood ratio between the two candidate functions
(power vs. exponential) fitted to the empirical data, whereR > 0 and p < .05 means that the data is statistically more likely to follow
a power distribution rather than an exponential one (which is the case in all four datasets - also visually).

environments: the effect of recency on the reuse probability of tags
is more likely to follow a power law distribution than an exponen-
tial one. This speaks in favor of our approach’s first component, the
BLL equation, modeling a user’s temporal tagging behavior via a
power decay function.

The remainder of the present work deals with research questions
2 - 4 (see Section 1). Before we present the experimental setup
(Section 5) and the results (Section 6) of the experiments address-
ing these questions, the next section describes our implementation
of the two components of the activation equation, the BLL equation
and the associative component, as a tag recommender.

4. A TAG RECOMMENDER BASED ON AC-
TIVATION IN MEMORY

The analysis in Section 3, revealed that the effect of recency
on the reuse probability of tags follows a power law distribution.
We therefore decided to implement the base-level learning (BLL)

equation as a tag recommender and subsequently also extended the
approach by the activation equation’s second component, the asso-
ciative component.

The first recommender is termed BLL as it implements the base-
level activation equation (equation 2) in the form of a tag rec-
ommender using its two components of frequency and recency.
Frequency-based models have been described in recommender sys-
tems research as “most popular tags” approaches [23]. There are
different forms of these approaches, recommending either the most
popular tags of the user, the resource or a mixture of both (see Sec-
tion 5.3).

Recency-based recommender models (also referred to as time-
dependent approaches) have been suggested in literature (e.g., [62,
64]) as an extension of “most popular tags” approaches. To date,
this approaches modeled the time-dependent decay of tag reuse us-
ing a linear or exponential function (see Section 2) which is not
in line with our findings. Hence, our second research question
(whether base level activation can predict future tag use) translates



Symbol Description
u user
t tag
r resource
B set of bookmarks / posts
Btrain train set
Btest test set
Bt set of bookmarks tagged by t
U set of users
T set of tags
R set of resources
Tr T of resource r
Tu T of user u
Y set of tag assignments
Yu Y of user u
Yt Y of tag t
Yr Y of resource r
Yb Y of bookmark b
Yt,r Y of tag t and resource r
Yt,u Y of tag t and user u
β mixing parameter
d decay parameter
c context cue
S(c, t) association strength between c and t
A(t, u, r) activation of tag t for u and r
B(t, u) base-level activation of tag t for u
T̃k(u, r) set of top k recommended tags for u and r
T (u, r) set of relevant tags used by u for r

Table 1: Overview of notations used in this paper.

into whether it is possible to improve a “most popular tags” recom-
mender with a recency component based on a power decay func-
tion.

4.1 Formalization
In this section we present the formalization of our proposed method.

The notations we shall use throughout the paper are defined in
Table 1. To realize this recommender the following steps where
performed: For each tag in a user’s training set Btrain, we have
calculated the base-level activation B(t, u) of a given tag t in a
user u’s set of tag assignments, Yu. First, we determined a ref-
erence timestamp timestampu,ref (in seconds) that is the times-
tamp of the most recent bookmark of user u. In our dataset sample,
timestampu,ref corresponds to the timestamp of the user’s book-
mark that has been selected for the test set (see Section 5.2).

If j = 1 ... n indexes all tag assignments in Yu, the recency of
a tag assignment is given by timestampu,ref − timestampt,u,j .
B(t, u) of tag t for user u is given by the BLL equation:

B(t, u) = ln(
n∑

j=1

(timestampu,ref − timestampt,u,j)−d)

(3)
, where d is set to .5 based on [2]. We also tried other d values,
such as 1.2 based on the best α values of our empirical analysis
in Section 3, but this did not lead to better results in terms of rec-
ommender accuracy. Thus, we decided to keep the value from the
literature.

In order to map the values onto a range of 0 to 1 we applied a
softmax function as proposed in related work [40]:

softmax
Tu

(B(t, u)) =
exp(B(t, u))∑

t′∈Tu

exp(B(t′, u))
(4)

, where t′ is a tag in Tu, the set of tags used by user u in the past.
To investigate our third research question (as to whether the BLL

equation can be further improved by also considering the asso-
ciative component evoked by the current context) we have imple-
mented equation 1 in form of:

A(t, u, r) = softmax
Tu

(B(t, u))︸ ︷︷ ︸
BLL

+
∑
c∈Tr

(|Yc,r| · S(c, t))

︸ ︷︷ ︸
BLLAC

(5)

To calculate the variables of the associative component, i.e., to
model a user’s semantic context, we looked at the set of tags Tr

assigned by other users to the given resource r. A user’s semantic
context certainly consists of a greater variety of aspects, such as
content words in the title or in the page text. However, since not
all of our datasets contain title information or page text and other
studies have convincingly demonstrated the impact of a resource’s
prominent tags on a user’s tagging behavior (e.g., [37, 33]), we
decided to approximate the context by means of other users’ tags.

When applying the formula to a recommender system, related
literature [54, 58] suggests to use a measure of normalized tag co-
occurrence to represent the strength of an association. Accordingly,
we define the co-occurrence between two tags as the number of
bookmarks in which both tags are included. To add meaning to
the co-occurrence value, the overall frequency of the two tags is
also taken into consideration. This is done by normalizing the co-
occurrence value according to the Jaccard coefficient (6) following
the approach described in [54]:

S(c, t) =
|Bc ∩Bt|
|Bc ∪Bt|

(6)

In our implementation, S(c, t) is calculated as an association
value between a tag previously given by the target user (t) and a
tag that has been assigned to a resource of interest (c). Based on
a tag co-occurrence matrix that depicts the tag relations of an en-
tire data set, information about how many times two tags co-occur
(Bc ∩ Bt) in bookmarks is retrieved and set into relation with the
number of bookmarks in which at least one of the two tags appear
(Bc ∪Bt). We set the attentional weight Wc of c to the number of
times c occurred in the tag assignments of the target resource, i.e.,
|Yc,r|.

Hence, the associative component in equation 5 works in a simi-
lar way as resource-based Collaborative Filtering in the tag recom-
mender literature [57]. This means, that tags with a higher simi-
larity to the target resource (measured by tag co-occurrence) get a
higher associative activation value than tags with a smaller useful-
ness in the current context.

Finally, to examine our fourth research question (as to whether
the activation equation can be implemented in form of an effective
recommender mechanism) we extended equation 5 by also consid-
ering the most popular tags in the tag assignments of the resource
Yr (MPr , i.e., argmaxk

t∈Tr
(|Yt,r|)) [21]. This simple extension

was necessary for the prediction of new and plausible tags that a
user has not assigned in her previous tagging history (e.g., [37, 33,
29]). Therefore, we have selected MPr over other methods like CF
because as shown in related work [12, 52, 14, 15], users in social
tagging systems are more likely to directly imitate tags that have



Present

tag t
recency3 = 7 days

Decay

tag t tag t

recency2 = 8 days

recency1 = 10 days

Activation

Past

Σ=B(t,u)

Conventional "Most Popular Tags" approach
MP(t,u) = c(t) / |Yu | = 3 / |Yu | = 0.3 (if |Yu |=10)

BLL-based approach
B(t,u) = ln(Σrecencyj ) = ln(10-0.5 + 8-0.5 + 7-0.5) = 0.05

Figure 2: Example for applying the BLL equation (first com-
ponent of the activation equation) to estimate the activation
value of a tag t and to show the advantage over the conventional
“most popular tags by user” (MPu) approach.

already been assigned to a target resource. Finally, the top-k rec-
ommended tags for a given user u and resource r are calculated by
the following equation:

T̃k(u, r) = argmaxk
t∈Tu,Tr

(β softmax
Tu

(A(t, u, r)︸ ︷︷ ︸
BLLAC

+(1− β) softmax
Tr

(|Yt,r|)

︸ ︷︷ ︸
BLLAC+MPr

)

(7)
, where β is used to weight the two components, i.e., the ac-

tivation values A(t, u, r) and the most popular tags of the target
resource given by MPr . Results presented in Section 6 were calcu-
lated using β = .5.

4.2 Illustration
In order to further clarify how we have applied the equations

to characterize a user’s individual tagging history, we provide two
simple examples illustrated in Figures 2 and 3. That way, we also
aim at demonstrating the advantage of our approach over conven-
tional “most popular tags” approaches.

The example in Figure 2 shows how the BLL equation provides
a more differentiated characterization of a user’s tagging pattern
than the “most popular tags by user” (MPu) approach. In this ex-
ample, a user u applied a tag t three times, i.e., n = 3. We assume
that she applied the tag ten, eight and seven days ago. The three
corresponding recency values are recency1 = 10, recency2 = 8 and
recency3 = 7. We have calculated the recency of a tag t’s use by
subtracting the timestamp of the jth use of t from the timestamp
of u’s most recent bookmark. Each of the three uses of t activates
the corresponding memory unit. In Figure 2, the upward directed
arrows symbolize this hypothesized activation. Due to the power-
law of forgetting, each activation decreases in time (represented
by the sloping curves) and, according to [2], each of the three re-
cency values is raised by the power d = -.5. Finally, the base-level
activation of the memory unit for tag t is given by summing the re-
maining effects of the three tag uses, i.e., ln(10−.5+8−.5+7−.5),

t2

t1

Ranking after calculating the 
base level activation 

Ranking after calculating the 
base level + associative activation

Sc,t1

t2

t1

Wc

B(t2,u) A(t2,u,r)

t2

B(t2,u)

t1

Figure 3: Example showing the impact of associative activation
(second component of the activation equation).
Note: black filled nodes and unfilled nodes represent contextual
and target tags, respectively; their sizes represent their atten-
tional weights Wc (in case of contextual tags) and activation (in
case of the target tags t1 and t2). The edge length represents
the co-occurrence-based association strength Sc,t. Left panel:
ranking based on base-level activation B(t, u) not taking into
account the contextual tags. Right panel: refined ranking af-
ter considering the associative activation evoked by contextual
tags, resulting in the full activation A(t, u, r).

resulting in the base-level activation of .05. To the contrary, a con-
ventional “most popular tags by user” (MPu) approach, only takes
into account the tag’s usage frequency and thus, treats every tag as-
signment the same, independent of the time elapsed since its use.
Given the user’s entire set of tag assignments Yt,u encompasses 10
assignments, this approach would yield a value of .3 (3 / 10). This
should demonstrate that the BLL equation allows for a more differ-
entiated characterization of a user’s tagging history than MPu.

In the example of Figure 3, we show the additional impact of the
associative activation defined by the second component of the acti-
vation equation. The associative activation is evoked by the current
context, i.e., the tags assigned by preceding users to the target re-
source (in the following called contextual tags). The left panel of
Figure 3 shows two target tags, t1 and t2 exhibiting different base-
level activation levels (represented by the circle size): t1 reaches a
higher base-level activation and thus, a higher ranking than t2. This
relationship changes when considering the influence of the contex-
tual tags, as schematically visualized in the right panel of Figure 3.
These contextual tags are represented by the black nodes. Depend-
ing on their weights Wj (represented by the size of the black-filled
nodes) and strength of association Sj,i (represented by the length
of the edges), the contextual tags spread additional associative ac-
tivation to the target tags t1 and t2, i.e., make them more easily
available for retrieval and use. t2 is stronger associated with the
contextual tags and thus, receives stronger associative activation
than t1. Summarizing, we can see that t2 is assigned a higher rank-
ing than t1 when considering both, the base-level and associative
activation by means of the full activation equation.

5. EXPERIMENTAL SETUP
In this section we describe in detail the datasets, the evaluation

method, the evaluation metrics and the baselines algorithms used
for our experiments.

5.1 Datasets
For the purpose of our study and for reasons of reproducibility,

our investigations focused on four well-known and freely-available
folksonomy datasets. To test our approach on both, broad and nar-



Dataset p |B| |U | |R| |T | |Y |
BibSonomy - 400,983 5,488 346,444 103,503 1,479,970

3 41,764 788 8,711 5,757 161,509
CiteULike - 3,879,371 83,225 2,955,132 800,052 16,703,839

3 735,292 17,983 149,220 67,072 2,242,849
Delicious - 1,416,151 15,980 931,993 180,084 4,107,107

3 466,480 9,102 58,025 16,574 1,506,231
Flickr - 864,679 9,590 864,679 127,599 3,552,540

3 860,135 8,332 860,135 58,831 3,465,346

Table 2: Properties of the datasets, where |B| is the number
of bookmarks, |U | the number of users, |R| the number of re-
sources, |T | the number of tags and |Y | the number of tag as-
signments. As shown in column “p”, we applied both: a p-core
pruning approach (represented by “3”) as well as no p-core
pruning (represented by “-”).

row folksonomies [18] (in broad folksonomy many users are al-
lowed to annotate a particular resource while in a narrow folkson-
omy only the user who has uploaded the resource is permitted to
apply tags), datasets from BibSonomy, CiteUlike, Delicious (broad
folksonomies) and Flickr (narrow folksonomy) were selected. These
dataset have been also used in many of the related work in tag-
based recommender systems and can be seen as the state-of-the-art
benchmarking datasets (see also e.g., [16, 23, 10, 5]).

BibSonomy: The dataset of the social bookmark and publication
sharing system BibSonomy2 is freely available and can be down-
loaded for scientific purposes3 (2013-07-01). For our evaluation we
concentrated on the tags assigned to bookmarks which resulted in
400,983 bookmarks, 5,488 users, 346,444 resources, 103,503 tags
and 1,479,970 tag assignments.

CiteULike: CiteULike4 is a reference management system which
gives free access to their data to researchers for non-commercial
uses5 (2013-03-10). The CiteULike dataset consists of 3,879,371
bookmarks, 83,225 users, 2,955,132 resources, 800,052 tags and
16,703,839 tag assignments.

Delicious: The dataset of the social bookmarking Web service
Delicious6 is freely available for scientific purposes and was crawled
and provided by the University of Koblenz7 (2010-01-07) within
the Tagora EU project8. The dataset contains 47,208,747 book-
marks, 532,924 users, 17,262,480 resources, 2,481,698 tags and
140,126,586 tag assignments.

Flickr: Flickr9 is an image hosting and sharing platform which
also offers online community elements. As the Delicious dataset,
the Flickr dataset is also provided by the University of Koblenz (see
Delicious dataset) and contains 28,153,045 bookmarks, 319,686
users, 28,153,045 resources, 1,607,879 tags, and 112,900,000 tag
assignments.

To reduce computational effort (see also Section 6.2), we applied
the dataset pruning technique proposed by Gemmel et al. [16] to the
very big Delicious and Flickr datasets. Thus, for these two datasets,

2http://www.bibsonomy.org/
3http://www.kde.cs.uni-kassel.de/bibsonomy/dumps
4http://www.citeulike.org/
5http://www.citeulike.org/faq/data.adp
6https://delicious.com/
7https://www.uni-koblenz.de/FB4/Institutes/IFI/AGStaab/
Research/DataSets/PINTSExperimentsDataSets/
8http://www.tagora-project.eu/
9http://www.flickr.com/

Algorithm(s) Parameter(s) Value
CF k 20
BLL, BLLAC , BLL+MPr , BLLAC+MPr d .5
APR, FR d .7
APR, FR l 10
MPu,r , GIRPTM, BLL+MPr , BLLAC+MPr β .5
FM, PITF kU , kR, kT 256
FM, PITF l 50
FM, PITF α 0.01
FM, PITF λ .0

Table 3: Hyperparameters of the algorithms as used in the ex-
periments.

we randomly selected 3%10 of the user profiles (i.e., all the book-
marks of these users) in the folksonomies. However, as shown in
Table 2, the pruned datasets of Delicious and Flickr still remain
larger than the dataset of BibSonomy. Furthermore, according to
Gemmel et al. [16], when following this pruning method, experi-
ments on larger dataset samples provide near identical trends in the
algorithmic results.

Since automatically generated tags affect the performance of the
tag recommender systems, we excluded all of those tags from the
datasets (e.g., we excluded the no-tag, bibtex-import-tag, etc.). Fur-
thermore, we decapitalized all tags as suggested by related work in
the field (e.g., [49]). The overall dataset statistics can be found in
Table 2. As shown in column “p”, we applied both: a p-core prun-
ing approach [6] (represented by “3”) to capture the issues of data
sparseness, as well as no p-core pruning (shown as “-”) to capture
the issue of cold-start users or items (see Doerfel et al. [10]), re-
spectively. This p-core pruning is an iterative process where in each
iteration all resources, tags and users are deleted that occur less than
p times in a dataset. This algorithm terminates when no more tag
assignments can be deleted which ensures that all resources, tags
and users can be found at least p times in the remaining core [23,
33].

5.2 Methodology
To evaluate our tag recommender approach we used a leave-post-

out method as proposed by popular and related work in this area
(e.g., [23]). To that end, we created two datasets, one set for train-
ing and the other set for testing. To split up the dataset in two,
we removed each user’s latest bookmark in time from the origi-
nal dataset and added it to the test set. Each bookmark in the test
set consists of a collection of one or more tags to which we fur-
ther refer as relevant tags. The now reduced version of the original
dataset was used for training, the newly created one for testing.
This procedure is a plausible simulation of a real-world environ-
ment as it retains the chronological order of a user’s bookmarks
and depicts a suggested offline-evaluation procedure for time-based
recommender systems [7]. To quantify the performance of our ap-
proaches, a set of well-known, standard information retrieval per-
formance metrics were used [23, 33]:

Recall (R) is calculated as the number of correctly recommended
tags divided by the number of relevant tags, where T̃k(u, r) denotes
the k recommended tags and T (u, r) the list of relevant tags of a
user u for resource r that is determined by the bookmark in the test

10The reason for choosing this 3% limit was the fact that the PITF
algorithm calculations (see also APR and FR in Section 5.3) took
around 14 days on a 2.0 GHz six-core Intel Xeon E5-2620 proces-
sors with 128 GB of RAM (see Section 6.2), which we found to
be a fair upper runtime limit for any of our calculations (which we
performed in memory).

http://www.bibsonomy.org/
http://www.kde.cs.uni-kassel.de/bibsonomy/dumps
http://www.citeulike.org/
http://www.citeulike.org/faq/data.adp
https://www.uni-koblenz.de/FB4/Institutes/IFI/AGStaab/Research/DataSets/PINTSExperimentsDataSets/
https://www.uni-koblenz.de/FB4/Institutes/IFI/AGStaab/Research/DataSets/PINTSExperimentsDataSets/
http://www.flickr.com/


set Btest [59]:

R@k =
1

|Btest|
∑

u,r∈Btest

|T̃k(u, r) ∩ T (u, r)|
|T (u, r)| (8)

Precision (P) is calculated as the number of correctly recom-
mended tags divided by the number of recommended tags k [59]:

P@k =
1

|Btest|
∑

u,r∈Btest

|T̃k(u, r) ∩ T (u, r)|
k

(9)

F1-score (F1) combines precision and recall into one score [59]:

F1@k = 2 · P@k ·R@k
P@k +R@k

(10)

Mean reciprocal rank (MRR) is the sum of the reciprocal ranks
of all relevant tags in the list of recommended tags. This means that
a higher MRR is achieved if relevant tags occur at the beginning of
the recommended tag list [45]:

MRR =
1

|Btest|
∑

u,r∈Btest

1

|T (u, r)|
∑

t∈T (u,r)

1

rank(t)
(11)

Mean average precision (MAP) is an extension of the precision
metric that additionally looks at the ranking of recommended tags.
MAP is described in the subsequent formula, where Bk is 1 if the
recommended tag at position k is among the relevant tags and 0
otherwise. Pu,r@k depicts Precision@k calculated for user u and
resource r [45]:

MAP =
1

|Btest|
∑

u,r∈Btest

1

|T (u, r)|

|T̃k(u,r)|∑
k=1

Bk · Pu,r@k

(12)

In particular, we report R@k, P@k, MRR and MAP for k = 10
and F1-Score (F1@k) for k = 5 recommended tags11.

5.3 Baseline Algorithms
We compared the results of our approach to several baseline tag

recommender algorithms. The algorithms were selected based on
their popularity in the community, performance and novelty (see
also [38, 5]). Hyperparameters for the algorithms, as they were
used for the experiments, are found in Table 3.

MostPopular (MP): This approach recommends for any user
u ∈ U and any resource r ∈ R the same set of tags T̃ (u, r). This
set of tags is weighted by the frequency in all tag assignments Y
[24]:

T̃k(u, r) =
k

argmax
t∈T

(|Yt|) (13)

MostPopularu (MPu): The most popular tags by user approach
suggests the most frequent tags in the tag assignments of the user
Yu [24].

MostPopularr (MPr): The most popular tags by resource algo-
rithm weights the tags based on their frequency in the tag assign-
ments of the resource Yr [24].

MostPopularu,r (MPu,r): This algorithm is a mixture of the
most popular tags by user and resource approaches:

T̃k(u, r) =
k

argmax
t∈Tu,Tr

(β|Yt,u|+ (1− β)|Yt,r|) (14)

11F1@5 was also used as the main performance metric in the
ECML PKDD Discovery Challenge 2009: http://www.kde.cs.uni-
kassel.de/ws/dc09/.

The β parameter can be used to balance the influence of the user
and the resource components [24] and was set to .5 as it is also done
in our approaches.

Collaborative Filtering (CF): Marinho et al. [39] described
how the classic Collaborative Filtering (CF) approach [50] can be
adapted for tag recommendations. Since folksonomies have ternary
relations (users, resources and tags), the classic CF approach can
not be applied directly. Thus, the neighborhood Nk

u of a user u is
formed based on the tag assignments in the user profile Yu. Further-
more, in CF-based tag recommendations only the subset Vr of users
that have tagged the active resource r are taken into account when
calculating the user neighborhood. The set of n recommended tags
can then be determined based on this neighborhood [39, 23]:

T̃k(u, r) =
k

argmax
t∈T

(
∑

v∈Nk
u

sim(Yu, Yv) · δ(v, r, t)) (15)

, where δ(v, r, t) := 1 if (v, r, t) ∈ Yt and 0 else. The only vari-
able parameter here is the number of users k in the neighborhood
which has to be set in advance. We used a neighborhood size k of
20 as suggested in related work [16]12. There are different ways
to calculate the similarity sim(Yu, Yv) between two users u and v.
For our experiments we applied the Jaccard’s similarity. We also
tried the Okapi BM25 similarity measure (usually the best measure
to calculate the similarity between users) [43, 44, 61] where we
reached almost the same results as with Jaccard’s, but with a sig-
nificantly higher computational effort, especially in the case of the
bigger datasets.

Adapted PageRank (APR): Hotho et al. [21] adapted the well-
known PageRank algorithm [42] in order to rank the nodes within
the graph structure of a folksonomy. This is based on the idea that
a resource is important if it is tagged with important tags by im-
portant users. Thus, the folksonomy has to be converted into an
undirected graph where the set of nodes s is the disjoint union of
all users U , resources R and tags T : s = U ∪ R ∪ T . The co-
occurences of users and resources, users and tags and resources
and tags are treated as weighted edges in this graph and can also be
represented as an adjacency matrix A. The update of the weight-
ings is done using the following formula where ~p is a preference
vector and d is a variable to set its impact [21]:

~w ← dA~w + (1− d)~p (16)

For recommending tags, the preference vector ~p is used to give
higher weights to the target user and resource of the recommenda-
tion task. While all other users and resources get a weight of 1,
they get a weight of 1+ |U | and 1+ |R| [23]. Please have a look at
the next paragraph about FolkRank to get more information about
the used implementation and parameters.

FolkRank (FR): The FolkRank algorithm is an extension of the
Adapted PageRank approach that was also proposed by Hotho et
al. [21]. This extension gives a higher importance to the preference
vector ~p using a differential approach, where ~w(0) is the weighting
vector calculated using the Adapted PageRank algorithm with ~p =
1 and ~w(1) is the result with a ~p-setting as described above:

~w = ~w(1) − ~w(0) (17)

Our Adapted PageRank and FolkRank implementations are based
on an open-source Java implementation provided by the University

12We also tested other values for k but observed that CF did not
generated significant higher values of estimate when setting k >
20.



of Kassel13. In this implementation the parameter d is set to .7 and
the maximum number of iterations l is set to 10 [23].

p Metric MPu GIRP BLL BLLAC

B
ib

So
no

m
y

- F1@5 .152 .157 .162 .169
∗

MRR .114 .119 .125 .133
MAP .148 .155 .162 .172

3 F1@5 .215 .221 .228 .292
∗∗∗
◦◦◦

MRR .202 .210 .230 .286
∗∗∗
◦◦◦

MAP .238 .247 .272 .345
∗∗∗
◦◦◦

C
ite

U
L

ik
e

- F1@5 .185 .194 .201
∗∗∗

.211
∗∗∗
◦◦◦

MRR .165 .182 .193
∗∗∗

.205
∗∗∗
◦◦◦

MAP .194 .213 .227
∗∗∗

.242
∗∗∗
◦◦◦

3 F1@5 .272 .291 .300
∗∗

.336
∗∗∗
◦◦◦

MRR .268 .294 .319
∗∗∗

.365
∗∗∗
◦◦◦

MAP .305 .337 .366
∗∗∗

.424
∗∗∗
◦◦◦

D
el

ic
io

us

- F1@5 .170 .184 .196
∗∗∗

.231
∗∗∗
◦◦◦

MRR .155 .178 .197
∗∗∗

.230
∗∗∗
◦◦◦

MAP .180 .207 .230
∗∗∗

.274
∗∗∗
◦◦◦

3 F1@5 .193 .194 .206
∗∗

.311
∗∗∗
◦◦◦

MRR .170 .177 .193
∗∗

.296
∗∗∗
◦◦◦

MAP .198 .207 .227
∗∗

.364
∗∗∗
◦◦◦

Fl
ic

kr

- F1@5 .435 .509 .523
∗

.523
∗

MRR .360 .445 .466
∗∗∗

.466
∗∗∗

MAP .468 .590 .619
∗∗∗

.619
∗∗∗

3 F1@5 .488 .577 .592
∗

.592
∗

MRR .407 .511 .533
∗∗∗

.533
∗∗∗

MAP .527 .676 .707
∗∗∗

.707
∗∗∗

Table 4: F1@5, MRR and MAP values for BibSonomy, CiteU-
Like, Delicious and Flickr (with no core and p-core = 3) show-
ing that the BLL equation provides a valid model of a user’s
tagging behavior to predict tags (second research question).
Moreover, the results imply that using the activation equation
(BLLAC ) to also take into account semantic cues (i.e, associa-
tions with resource tags) can further improve this model (third
research questions). The symbols ∗, ∗∗ and ∗∗∗ indicate statisti-
cally significant differences based on a Wilcoxon Ranked Sum
test between BLL, BLLAC and GIRP at α level .05, .01 and
.001, respectively; ◦, ◦◦ and ◦◦◦ indicate statistically significant
differences between BLLAC and BLL at the same α levels.

Factorization Machines (FM): Rendle [46] introduced Factor-
ization Machines which combine the advantages of Support Vector
Machines (SVM) with factorization models to build a general pre-
diction model that is also capable of tag recommendations. More
information about the used framework and parameters can be found
in the next paragraph describing the PITF approach.

Pairwise Interaction Tensor Factorization (PITF): This ap-
proach proposed by Rendle and Schmidt-Thieme [49] is an ex-
tension of factorization models based on the Tucker Decomposi-
tion (TD) model that explicitly models the pairwise interactions
between users, resources and tags. The FM and PITF results pre-
sented in this paper were calculated using the open-source C++
tag recommender framework provided by the University of Kon-

13http://www.kde.cs.uni-kassel.de/code

stanz14. We set the dimensions of factorization kU , kR and kT to
256, the learning rate α to .01, the regularization constant λ to .0
and the number of iterations l to 50 as suggested in [49]15.

Temporal Tag Usage Patterns (GIRP): This time-dependent
tag-recommender algorithm was presented by Zhang et al. [64]
and is based on the frequency and the temporal usage of a user’s
tag assignments. In contrast to our BLL and BLLAC approaches,
GIRP models the temporal tag usage with an exponential function
rather than a power function (see Section 3).

GIRP with Tag Relevance to Resource (GIRPTM): This is an
extension of the GIRP algorithm by the resource component (MPr),
which is also done in our BLL+MPr and BLLAC+MPr approaches
[64].

6. RESULTS AND DISCUSSION
In this section we present the results of our experiments in re-

spect to recommender accuracy and runtime.

6.1 Recommender Accuracy
The presentation of the evaluation results is organized in line

with our research questions 2 - 4, as introduced in Section 1. With
respect to the recommender accuracy, we will turn our attention
first, to the BLL equation and its validity to model individual tag-
ging behavior (RQ2), second, to the impact of context information
when added to the BLL equation (BLLAC ) (RQ3) and third, to a
comparison of our context enriched BLL implementation (BLLAC+
MPr) with state-of-the-art baseline approaches (RQ4). We report
these points in two subsections where the first one looks solely at
the individual tag reuse prediction (RQ2 and RQ3) and the second
one at the prediction of tag reuse in combination with tag imitation
(RQ4).

6.1.1 Predicting Tag Reuse
The BLL equation models the user’s tagging behavior with re-

spect to frequency and recency. While the frequency of tag use is
a fairly common parameter for tag recommendations, the factor of
time, that models the effects of a user’s long term memory (as de-
scribed through recency), is expected to bring additional value to
tag recommendation approaches. That is why we investigate our
second research question by determining the effect of the recency
component on tag assignments.

When comparing BLL with MPu and GIRP, the results reported
in Table 4 and Figure 4 clearly show that the time-dependent algo-
rithms BLL and GIRP both outperform the frequency-based MPu

approach. Looking further at the two time-dependent algorithms,
BLL reaches higher levels of accuracy than the less theory-driven
GIRP algorithm in both settings (with no core and p-core = 3).
Even more apparent is the impact of the recency component in the
narrow folksonomy (Flickr). Unlike the broad folksonomies (Bib-
Sonomy, CiteULike and Delicious), the Flickr dataset has no tags
of other users available for the target resource. Therefore, a user
needs to assign tags without having the inspiration of previously
given tags. We assume that the user, to this end, needs to draw on
her long term memory that the BLL equation aims to mimic. In

14http://www.informatik.uni-konstanz.de/rendle/software/tag-
recommender/

15We also conducted experiments with factors of 64, 128 and 512
and with more and less than 50 iterations. Across all datasets the
setting of 256 factors and 50 iterations showed almost always the
best results. Factors less than 256 decreased the results significantly
while factors higher than 256 did not result in any higher estimates
while varying the number of iterations. The same is true for α and
λ.

http://www.kde.cs.uni-kassel.de/code
http://www.informatik.uni-konstanz.de/rendle/software/tag-recommender/
http://www.informatik.uni-konstanz.de/rendle/software/tag-recommender/
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Figure 4: Recall/Precision plots for BibSonomy, CiteULike, Delicious and Flickr (no core and p-core = 3) showing the performance
of BLL and BLLAC along with MPu and GIRP for 1 - 10 recommended tags (k).

summary, these results provide strong evidence that the BLL equa-
tion provides a valid model of a user’s tagging behavior to predict
tags (second research question). These results are further proved to
be statistically significant based on a Wilcoxon Rank Sum test that
is also shown in Table 4.

By expanding BLL to BLLAC , we implement the activation equa-
tion as explained in Section 4 in order to address our third research
question. The activation equation enriches the base-level activa-
tion (i.e., frequency and recency of tag use) by adding contextual
activation through tags previously assigned to the target resource.
Looking at the results of this experiment, as illustrated in Table 4
and Figure 4, a number of interesting aspects appear. For one
thing, the results demonstrate that BLLAC reveals only a small
improvement over BLL, when applied on the unfiltered datasets
(no p-core) of the broad folksonomies (BibSonomy, CiteULike and
Delicious). However, this changes when looking at the results for
the p-core pruned datasets (p = 3). Caused by the higher number
of tags assigned to each resource, the contextual activation gains
impact. This leads to considerably increased values for all of the
used metrics (F1@5, MRR, MAP). One might wonder why the
results of BLL and BLLAC are the same in the case of the nar-
row folksonomy (Flickr). This is, in fact, an expected outcome.
The Flickr dataset represents a narrow folksonomy and thus, re-
sources are tagged by only one user (i.e, the one that has uploaded
it), the model of the resource component does not generate addi-
tional value. Since the fine-tuning or re-ranking of the user tags
based on context cues increases the recommender accuracy in the
broad folksonomies, we can also answer the third research question
positively.

6.1.2 Predicting Tag Reuse and Tag Imitation
To address our fourth and last research question, we combine

our BLLAC approach with MPr , which leads to BLLAC+MPr .

Hereby, BLLAC models the context-aware user component while
MPr further models the resource component to complementary take
into account new tags that have not been used by the target user in
the past. The results presented in Table 5 show that this approach
outperforms a set of state-of-the-art baseline algorithms as well as
BLL+MPr (without contextual activation of the user tags). More-
over, the three time-dependent algorithms (GIRPTM, BLL+MPr

and BLLAC+MPr) produce higher estimates (F1@5, MRR and
MAP) across all datasets as well as in both settings (with no core
and p-core = 3). Moreover, an important observation is that our
BLLAC+MPr approach also significantly outperforms GIRPTM,
the currently leading, graph-based time-depended tag recommen-
dation algorithm. Particularly good results are shown for ranking-
dependent metrics such as MRR and MAP. This observation clearly
illustrates the advantages of our approach that is build upon long-
standing models of human memory theory, over the less-theory
driven GIRPTM algorithm that also utilizes time information of
social tags.

Another aspect worth discussing is the contrast of the results il-
lustrated in Table 4, where BLLAC reaches substantially higher
levels of accuracy than BLL, to the results outlined in Table 5,
where BLLAC+MPr only indicate marginal improvements over
BLL+MPr . In our opinion, this effect appears because the resource
tag information depicted in MPr is congruent with data used for
the contextual activation in BLLAC . This finding suggests that the
use of different resource metadata, such as title or body-text, may
be valuable when specifying the context in BLLAC (see also Sec-
tion 7). Similar observations can be made when looking at the Re-
call/Precision curves in Figure 5 that show the recommender per-
formance of the approaches for 1 - 10 recommended tags (k).

In summary, our results clearly imply that the activation equation
by Anderson et al. [2] can be used to implement a highly effec-
tive recommender approach. Overall, the simulations demonstrate



p Measure MP MPr MPu,r CF APR FR FM PITF GIRPTM BLL+MPr BLLAC+MPr

B
ib
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no

m
y

- F1@5 .013 .074 .192 .166 .175 .171 .122 .139 .197 .201 .202
MRR .008 .054 .148 .133 .149 .148 .097 .120 .152 .158 .159
MAP .009 .070 .194 .173 .193 .194 .120 .150 .200 .207 .209

3 F1@5 .047 .313 .335 .325 .260 .337 .345 .356 .350 .353 .358
MRR .035 .283 .327 .289 .279 .333 .329 .341 .334 .349 .350
MAP .038 .345 .403 .356 .329 .414 .408 .421 .416 .435 .439

C
ite

U
L

ik
e

- F1@5 .002 .131 .253 .218 .195 .194 .111 .122 .263 .270
∗∗∗

.271
∗∗∗

MRR .001 .104 .229 .201 .233 .233 .110 .141 .246 .258
∗∗∗

.259
∗∗∗

MAP .001 .134 .280 .247 .284 .284 .125 .158 .301 .315
∗∗∗

.317
∗∗∗

3 F1@5 .013 .270 .316 .332 .313 .318 .254 .258 .336 .346
∗∗∗

.351
∗∗∗

MRR .012 .243 .353 .295 .361 .366 .282 .290 .380 .409
∗∗∗

.415
∗∗∗

MAP .012 .294 .420 .363 .429 .436 .326 .334 .455 .489
∗∗∗

.497
∗∗∗

D
el

ic
io

us

- F1@5 .033 .140 .236 .228 .211 .229 .157 .185 .253 .270
∗∗∗

.274
∗∗∗

MRR .025 .113 .214 .214 .206 .221 .141 .178 .236 .262
∗∗∗

.267
∗∗∗

MAP .026 .146 .257 .262 .246 .270 .168 .211 .286 .320
∗∗∗

.327
∗∗∗

3 F1@5 .058 .399 .355 .397 .290 .396 .394 .404 .370 .405
∗∗∗

.417
∗∗∗
◦◦

MRR .041 .341 .330 .341 .284 .365 .361 .372 .329 .377
∗∗∗

.392
∗∗∗
◦◦◦

MAP .047 .443 .406 .441 .336 .466 .463 .478 .419 .483
∗∗∗

.504
∗∗∗
◦◦◦

Fl
ic

kr

- F1@5 .023 - .435 .417 .328 .334 .297 .316 .509 .523
∗

.523
∗

MRR .023 - .360 .436 .352 .355 .300 .333 .445 .466
∗∗∗

.466
∗∗∗

MAP .023 - .468 .581 .453 .459 .384 .426 .590 .619
∗∗∗

.619
∗∗∗

3 F1@5 .026 - .488 .493 .368 .378 .361 .369 .577 .592
∗

.592
∗

MRR .026 - .407 .498 .398 .404 .375 .390 .511 .533
∗∗∗

.533
∗∗∗

MAP .026 - .527 .663 .513 .523 .481 .502 .676 .707
∗∗∗

.707
∗∗∗

Table 5: F1@5, MRR and MAP values for BibSonomy, CiteULike, Delicious and Flickr (with no core and p-core = 3) showing
that our BLLAC+MPr approach outperforms state-of-the-art baseline algorithms (fourth research question). The symbols ∗, ∗∗
and ∗∗∗ indicate statistically significant differences based on a Wilcoxon Ranked Sum test between BLL+MPr , BLLAC+MPr and
GIRPTM at α level .05, .01 and .001, respectively; ◦, ◦◦ and ◦◦◦ indicate statistically significant differences between BLLAC+MPr

and BLL+MPr at the same α levels.

that our tag recommender approach exceeds the performance of
well-established and effective recommenders, such as MPu,r , CF,
APR, FM and even the currently leading time-dependent approach
GIRPTM [64] (fourth research question). Finally, it is indispens-
able to highlight that BLLAC+MPr , despite its simplicity, appears
to be even more successful than the sophisticated FR and PITF al-
gorithms. Again, these results are further proved to be statistically
significant based on a Wilcoxon Rank Sum test that is also shown
in Table 5.

6.1.3 Validation of the results in the ECML PKDD
Discovery Challenge 2009 Dataset

In order to increase the reproducibility of our results and to en-
sure that our results can be compared over different papers, we
conducted another experiment on the well-known ECML PKDD
discovery challenge 2009 dataset16. The dataset is an rather “old”
snapshot (from 2009) of BibSonomy at p-core level 2 consisting of
64,406 bookmarks, 1,185 users, 22,389 resources, 13,276 tags and
253,615 tag assignments, but is used in many of the related work.
Additionally, the dataset provides already a given train/test split,
which further ensures the comparability of results. The winning
algorithm based on the F1@5 evaluation metric in this tag rec-
ommender challenge was an optimized ensemble of factorization
machines algorithms and was proposed by Rendle et al. [48]. In

16http://www.kde.cs.uni-kassel.de/ws/dc09/

Table 6, we summarize the results presented in [48] together with
the results of the novel time-dependent approaches of our work.

The F1@5 estimates indicate that the dataset and the splitting
method is of advantage for resource-based approaches since MPr

clearly outperforms MPu. Interestingly, GIRP [64], reaches an
even lower F1@5 score than MPu which also indicates that the
information of time seems not to be important in this setting. How-
ever, BLL reaches a higher F1@5 score than MPu which again
shows the advantage of its power decay function. Another indica-
tion of the importance of the current context in form of resource
tags, is given by the very good results of our BLLAC approach
which are similar to the results of APR. Although, BLLAC still
recommends only tags already used by the given user, it adjusts
the ranking using already assigned resource tags (i.e., the current
context).

Our complete algorithm, BLLAC+MPr , reaches a F1@5 score
of .308 and thus, again outperforms other sophisticated methods
such as GIRPTM, CF, FR, FM and PITF. With regard to the fi-
nal ECML PKDD discovery challenge 2009 ranking, this would
result in the 8th position without any optimizations to the dataset
or the length of the recommended tag list. Additionally, our algo-
rithm is much more efficient in terms of computational complexity
than the better performing approaches (especially the ones based
on Factorization Machines, see also Table 7) and can be executed
for this dataset on a single machine in a few seconds. Summed
up, the results of this experiment show that our approach is capable

http://www.kde.cs.uni-kassel.de/ws/dc09/
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Figure 5: Recall/Precision plots for BibSonomy, CiteULike, Delicious and Flickr (with no core and p-core = 3) showing the perfor-
mance of BLL+MPr and BLLAC+MPr along with state-of-the-art baseline mechanisms for 1 - 10 recommended tags (k).

of providing high estimates of recommender accuracy in different
settings without the need of dataset optimization or complex calcu-
lation steps.

6.2 Runtime
In addition to recommender accuracy, we investigated the run-

time of our approaches both, in terms of computational complexity
and monitored runtime. Table 7 shows the complexity of all algo-
rithms in ascending order. We can see that the popularity-based al-
gorithms MPu, MPr and MPu,r , that count frequencies by simply
iterating over the tag assignments of the user (Yu) and/or the re-
source (Yr), provide linear runtime. For the time-based algorithms
GIRP, GIRPTM, BLL and BLL+MPr we can observe similar be-
havior. An additional term is introduced, when calculating BLLAC

and BLLAC+MPr . This term describes the initialization of the co-
occurrence matrix that holds the semantic context. The matrix is
built by iterating over each bookmark b in the set of bookmarks B
of a folksonomy and checking the tag assignments of b (i.e., Yb).
Even though this calculation step increases the computational com-
plexity of the approach, this step only needs to be performed once,
which may be done offline (especially for big datasets) and subse-
quently, it may not effect the online runtime in a live system.

Moreover, we can see that BLLAC and BLLAC+MPr show bet-
ter performance than the other state-of-the-art methods such as CF,
APR, FR, FM and PITF. As our theoretically motivated model al-
lows us to rely on relatively little but meaningful operations con-
sidering only user tag frequency, recency and semantic context in
terms of resource tags, our algorithm outperforms the former. CF
on the other hand, processes not only the tag assignments Yu of the
target user, but additionally the tag assignments of each user v in
the set of users (i.e., neighbors) that have tagged the target resource
(Vr). In cases where there are no other users available that have
tagged the target resource (i.e., cold-start resources), Vr becomes

the set of all users which then could lead to much higher com-
putational costs as expected (see our other runtime experiment in
Figure 6 described in the next paragraph). With regard to APR/FR
(depending on the number of nodes |U |, |R| and |T |) and FM/PITF
(depending on the dimensions of factorization kU , kR and kT ),
even multiple iterations l are computed (see also Section 5.3), which
leads to higher runtime complexities.

To furthermore proof the theoretical assumptions made in our
complexity analysis, a real runtime experiment was carried out. In
particular, we conducted an experiment on an IBM System x3550
server with two 2.0 GHz six-core Intel Xeon E5-2620 processors
and 128 GB of RAM using Ubuntu 12.04.2 and Java 1.7 to deter-
mine the overall runtime performance17 of the algorithms presented
above. All algorithms were executed as single core single treat in-
stance to ensure that the measured run-time is not affected by the
implementation. The results of this evaluation (in milliseconds) can
be found in Figure 6. As expected, the experiment proofs further
evidence that the popularity-based approaches, such as MPu, MPr

and MPu,r , the time-dependent approaches GIRP and GIRPTM
and also our theory-based approaches perform significantly better
than the more sophisticated graph-based approaches such as APR,
FR, FM and PITF.

7. CONCLUSION
With this paper, we showed that it is worthwhile to analyze in

more depth the human-computer interaction that is involved in the

17We report the overall runtime since it would not be fair to com-
pare the live prediction time of a model-based approach, that pre-
calculates the recommendations during the training phase as this is
for instance the case with FM or PITF, against the live prediction
time of a memory-based approach (e.g., MPu, MPr , MPu,r , BLL,
etc.).



Algorithm F1@5
MPu .098
GIRP .087
BLL .104
MPr .288
MPu,r .290
CF .295
APR .231
FR .290
GIRPTM .248
FM .296
PITF .302
BLLAC .238
BLLAC+MPr .308
Challenge winner [48] .355

Table 6: F1@5 estimates for selected algorithms on the ECML
PKDD Discovery Challenge 2009 dataset showing that our
BLLAC+MPr is only outperformed by the winning algorithm
(optimized ensemble of Factorization Machines [48]).

generation and exploitation of the data which we would like to use
to make recommendations. This involved designing an algorithm
that is optimally tuned to the statistical structure of the data. In
this particular case, we used a theory of human long-term memory
to devise a model that predicts the reuse probability of a tag in
social tagging, much in the same way as the human memory system
makes use of memory traces for current tasks.

The first research question of this work dealt with the question
whether an exponential or a power decay function is more appropri-
ate to account for the effect of recency on a tag’s reuse probability.
In order to examine this question we performed an empirical anal-
ysis on four social tagging datasets (BibSonomy, CiteULike, Deli-
cious and Flickr). The analysis showed that the effect of recency
on the reuse probability of tags follows a power law distribution.
This encourages the application of the BLL equation by Anderson
et al. [2] as it models a user’s temporal tagging pattern in form of a
power forgetting function.

In order to tackle our research questions 2 - 4, we followed a
three-step recommender evaluation strategy. We started by com-
paring the performance of BLL with MPu to determine the ef-
fect of considering the recency of each tag use. Results of an ad-
ditional comparison may differentiate our cognitive-psychological
model from the less theory-driven GIRP approach introduced by
Zhang et al. [64]. Our findings, tackling the second research ques-
tion, clearly demonstrate that regardless of the evaluation metric
and across all datasets, BLL reaches higher levels of accuracy than
MPu and even outperforms GIRP. Thus, processing the recency
of tag use is effective to account for additional variance of users’
tagging behavior and therefore, a reasonable extension of simple
“most popular tags” approaches. Furthermore, the significant ad-
vantage over GIRP indicates that drawing on memory psychology
guides the application of a reliable and valid model built upon long-
standing, empirical research. The equations that Zhang et al. [64]
used to implement their approach were developed from scratch
rather than derived from existing research described above. As a
consequence, [64] models the recency of tag use by means of an
exponential function, which is clearly at odds with the power law
of forgetting described in related work (e.g., [4]).

In a next step, we have extended BLL to BLLAC using current
context information based on the activation equation of Anderson
et al. [2]. Where BLL gives the prior probability of tag reuse that is

Algorithm Complexity Authors
MP O(|Y |) Jäschke et al. [24]
MPu O(|U | · |Yu|) Jäschke et al. [24]
GIRP O(|U | · |Yu|) Zhang et al. [64]
BLL O(|U | · |Yu|) Our approach
MPr O(|R| · |Yr|) Jäschke et al. [24]
MPu,r O(|U | · |Yu|+ |R| · |Yr|) Jäschke et al. [24]
GIRPTM O(|U | · |Yu|+ |R| · |Yr|) Zhang et al. [64]
BLL+MPr O(|U | · |Yu|+ |R| · |Yr|) Our approach
BLLAC O(|U | · |Yu|+ |B| · |Yb|) Our approach
BLLAC+MPr O(|U | · |Yu|+ |B| · |Yb|+ Our approach

|R| · |Yr|)
CF O(|U | · |Vr| · |Yv|) Marinho et al. [39]
APR O(|U | · l · (|Y |+ |U |+ |R|+ |T |)) Hotho et al. [21]
FR O(|U | · l · (|Y |+ |U |+ |R|+ |T |)) Hotho et al. [21]
FM O(l · |B| · (kT · |T |2+ Rendle et al. [47]

kU · kR · kT ))
PITF O(l · |B| · (kT · |T |2+ Rendle et al. [47]

kU · kR · kT ))

Table 7: Computational complexity of BLL, BLLAC ,
BLL+MPr and BLLAC+MPr compared to state-of-the-art
baseline algorithms in ascending order showing that our ap-
proaches provide a better runtime complexity than CF, APR,
FR, FM and PITF.

learned over time, the associative component tunes this prior proba-
bility to the current context by exploiting the current semantic cues
from the environment (i.e., the previously assigned tags of the tar-
get resource). This is in line with how ACT-R models the retrieval
from long-term memory. Our results show that this step signifi-
cantly improves the “pure” BLL equation, especially in case of the
p-core pruned datasets, where more context information (i.e, tag
assignments of the target resource) are available to calculate the
associative component (third research question).

In the last step, we combined BLLAC with the frequency esti-
mates of the most popular tags that have been applied by other users
to the target resource in the past (i.e., MPr) in order to be able to
also recommend new tags, i.e., tags that have not been used by the
target user before. Despite their simplicity and computational effi-
ciency, our results show that this combination (BLLAC+MPr) sig-
nificantly outperforms well-established mechanisms, such as CF,
FR, PITF and GIRPTM, in terms of recommender accuracy and
runtime. We assume this is the case because, in following some
fundamental principles of human memory, our approaches are bet-
ter adapted to the statistical structure of the environment (fourth
research question). Moreover, the results of this experiment also
show that there is only a small difference between BLLAC+MPr

and BLL+MPr (without contextual activation of the user tags),
which suggests the use of additional context information, such as
content-based features (e.g., the resource’s title or body-text). This
would also be in line with the studies of Marek et al. [34, 35, 36],
who showed that the resource title has a big impact on tags in col-
laborative tagging systems and so could be a better alternative to
represent context cues than the popular tags of the resource used in
the current work.

Finally, a glance on the results shows an interdependency be-
tween the examined dataset and the performance of our approaches.
While the distance to other strongly performing mechanisms is not
large in case of broad folksonomies (BibSonomy, CiteULike and
Delicious), this distance grows substantially larger in a narrow folk-
sonomy (Flickr), where no tags of other users are available for the
target user’s resources. From this interdependency we conclude
that applying a model of human memory is particularly effective if
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Figure 6: Overall runtime in milliseconds [ms] of BLL, BLLAC , BLL+MPr and BLLAC+MPr compared to state-of-the-art baseline
algorithms for BibSonomy, CiteULike, Delicious and Flickr showing the full time to process the whole dataset samples (training and
testing).

tag assignments are mainly driven by individual habits unaffected
by the behavior of other users, such as it is done in Flickr.

7.1 Future Work
In future work, we will continue examining memory processes

that are involved in categorizing and tagging Web resources. For in-
stance, in a recent study [51], we introduced a mechanism by which
memory processes involved in tagging can be modeled on two lev-
els of knowledge representation: on a semantic level (represent-
ing categories or LDA topics) and on a verbal level (representing
tags). Next, we will aim at combining this integrative mechanism
with the activation equation to examine a potential correlation be-
tween the impact of recency (time-based forgetting) and the level of
knowledge representation. We believe that conclusions drawn from
cognitive science will help to develop an effective and psycholog-
ically plausible tag recommendation mechanism. We also plan to
integrate our approach into an actual tagging system application.
This will provide us with a real-life setting to test user acceptance.
Furthermore, we are interested in extending our approach into the
domain of content-based tag recommender systems, i.e., exploring
additional context features such as title or body-text. Also, we want
to test the activation equation in the context of collaborative item
recommender systems, using tag and time information as input. We
consider this promising, as preliminary experiments suggest [31],
that the activation equation bears also a great potential to rank items
efficiently. Finally, we are interested in investigating the impact of
different tagging styles on tag recommender systems as suggested
by [27] and the study of individual learning curves in the tag recom-
mendation process as suggested by [25] for item recommendations.

8. REPRODUCIBILITY
Please note, that the source-code of all approaches introduced in

this paper are implemented in our open-source tag-recommender
framework TagRec [28, 55], which can be downloaded online for
free from our GitHub repository18. Furthermore, we provide open-
access to all data samples via e-mail request to ensure reproducibil-
ity of the methods described in our work.

18https://github.com/learning-layers/TagRec/
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APPENDIX
A. VALIDATION OF DATA SAMPLING

Table 8 reports on the validity of our data sampling strategy as
presented in Section 5.1. Due to the computational complexity of
some algorithms (e.g., PITF), we focused on randomly selecting
3% of the user profiles for the significant larger datasets Flickr and
Delicious. In order to check whether this sampling did introduce
any unwanted bias, we drew 5 additional random samples and re-
peated the estimation of of parameters for all algorithms. As high-
lighted, per algorithm, the table reveals only slight variance across
the five samples for each of the four datasets (two for Delicious
and two for Flickr). Test for statistical significance required a non-
parametric method due to a significant violation of the normal dis-
tribution assumption. Therefore, to compare the five samples with
respect to the F1@5 metric, we performed a Kruskal-Wallis test by
ranks for every dataset, each yielding a non-significant effect for
the sample:

• Delicious (no core): H(4) = 0.86, p = .99.

• Delicious (p = 3): H(4)=0.15, p = .99.

• Flickr (no core): H(4) = 2.94, p = .57.

• Flickr (p = 3): H(4) = 1.44, p = .84.



Delicious Flickr
Algorithm No core p = 3 No core p = 3
MPu .175 / .165 / .169 / .168 / .170 .187 / .186 / .190 / .189 / .193 .432 / .443 / .439 / .438 / .435 .487 / .502 / .495 / .491 / .488
MPr .144 / .140 / .139 / .139 / .140 .402 / .400 / .398 / .402 / .399 - -
MPu,r .238 / .230 / .233 / .233 / .236 .351 / .353 / .354 / .353 / .355 .432 / .443 / .439 / .438 / .435 .487 / .502 / .495 / .491 / .488
FR .226 / .227 / .228 / .226 / .229 .393 / .394 / .393 / .397 / .396 .334 / .338 / .340 / .340 / .334 .376 / .383 / .384 / .383 / .378
GIRPTM .258 / .250 / .253 / .252 / .253 .366 / .367 / .366 / .371 / .370 .506 / .517 / .512 / .508 / .509 .573 / .589 / .581 / .574 / .577
BLLAC+MPr .278 / .269 / .273 / .272 / .274 .412 / .414 / .414 / .417 / .417 .519 / .532 / .526 / .520 / .523 .586 / .604 / .596 / .586 / .592

Table 8: F1@5 estimates for MPu, MPr , MPu,r , FR, GIRPTM and BLLAC+MPr on 5 samples (i.e., 3% of randomly chosen users,
see Section 5.1) of Delicious and Flickr (no core and p = 3). The results show very similar estimates among all five samples, which
validates our chosen sampling strategy. The bold values (i.e., the fifth sample) are the reported ones in the rest of the paper.
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