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Abstract. In this paper, we introduce a tag recommendation algorithm
that mimics the way humans draw on items in their long-term memory.
Based on a theory of human memory, the approach estimates a tag’s
probability being applied by a particular user as a function of usage
frequency and recency of the tag in the user’s past. This probability is
further refined by considering the influence of the current semantic con-
text of the user’s tagging situation. Using three real-world folksonomies
gathered from bookmarks in BibSonomy, CiteULike and Flickr, we show
how refining frequency-based estimates by considering usage recency and
contextual influence outperforms conventional “most popular tags” ap-
proaches and another existing and very effective but less theory-driven,
time-dependent recommendation mechanism.
By combining our approach with a simple resource-specific frequency
analysis, our algorithm outperforms other well-established algorithms,
such as FolkRank, Pairwise Interaction Tensor Factorization and Collab-
orative Filtering. We conclude that our approach provides an accurate
and computationally efficient model of a user’s temporal tagging behav-
ior. We demonstrate how effective principles of recommender systems
can be designed and implemented if human memory processes are taken
into account.

Keywords: personalized tag recommendations; time-dependent recommender
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1 Introduction

In this paper, we suggest a tag recommendation mechanism that mimics how
people use to access their memory to name things they have encountered in
the past. In everyday communication, people are very effective and quick in
retrieving relevant knowledge from the enormous amount of information units
stored in their individual long-term memory (LTM). One example is tagging re-
sources on the Web, a rudimentary variant of communication [1, 2]. Here, people
name objects, such as images or music files, by means of social tags to create
retrieval cues for personal and collective information organization [3]. The issue
of how human memory ensures a fast and automatic information retrieval from
its huge LTM has been extensively examined by memory psychology (e.g., [4]).
Essentially, human memory is tuned to the statistical structure of an individ-
ual’s environment and keeps available those memory traces that have been used
frequently and recently in the past and are relevant in the current context [5].

Social tagging provides an illustrative example of the strong interplay be-
tween external, environmental and internal memory structures and processes
(e.g., [6]). For instance, the development of generative models of social tag-
ging demonstrated that the probability of a tag being applied can be modeled
through the preferential attachment principle (e.g., [7]): the higher the frequency
of a tag’s past occurrence in the tagging environment is, the more likely it will be
reused by an individual. Additionally, the same probability is also a function of
the tag’s recency, which is the time elapsed since the tag last occurred in the en-
vironment [8]. In summary, the probability of applying a particular word reflects
the individual’s probability of being exposed to the word in her environment [5].

The activation equation 1 of the cognitive architecture ACT-R (e.g., [4]) is an
empirically well-established formula to estimate the activation Ai of a memory
trace for an item i (e.g., the tag “recognition”), where the psychological construct
of item activation is assumed to control for the item’s retrieval from the LTM.
It is given by:

Ai = Bi +
∑
j

Wj × Sj,i︸ ︷︷ ︸
AssociativeComponent

(1)

A wealth of empirical data (e.g., [4, 9]) demonstrates that Ai is a function of the
item’s base-level activation Bi and associative activation caused by the associa-
tive component. Bi reflects the general usefulness of item i in the individual’s
past and is given by the base-level learning equation:

Bi = ln(

n∑
j=1

t−dj ) (2)

, where n is the frequency of item occurrences in the past and tj is the recency,
which is the time since the jth occurrence. For example, if a user has applied
the two tags “recognition” and “recommender” with equal frequency, i.e., for
an equal number of bookmarks, but “recommender” has dominated the user’s



recent bookmarks, the equation predicts a higher activation and hence, larger
probability of being reused, for “recommender” than for “recognition”. The ex-
ponent d accounts for the power-law of forgetting and models the phenomenon
that each memory’s activation, caused by the jth occurrence, decreases in time
according to a power function. The exponent d is typically set to 0.5 [4].

The second component of Ai, the associative activation, is assumed to adjust
Bi according to the individual’s current context that may consists of words
included in a resource’s abstract or popular tags assigned to the resource. For
example, even if the base-level activation for the tag “recognition” is smaller than
for “recommender”, a particular set of contextual elements, such as the words
“memory” and “recollection”, will spread associative activation to “recognition”
and will substantially increase its probability being reused. In equation 1, Wj

represents the weights of the items j, which are elements of the current context
(e.g., “memory” and “recollection”); Sj,i represents the strengths of association
from the contextual elements to an item (e.g., “recognition”). Section 3 gives a
detailed and formal description of how these two components are calculated.

In the present work, we test the assumption that the two components of
equation 1 (time and semantic context) can be used to improve frequency-based
tag reuse predictions. Specifically, we raise the following three research questions:

– RQ1 : Does the base-level learning equation provide a valid model of a user’s
tagging behavior in the past to predict future tag assignments?

– RQ2 : Does the additional consideration of the associative component evoked
by the current context further improve the accuracy of the base-level learning
equation?

– RQ3 : Can the whole activation equation, that considers base-level and as-
sociative activation, be applied and extended to create an effective and effi-
cient tag recommendation mechanism compared to state-of-the-art baseline
approaches?

The strategy we chose to address all research questions consists of three
steps. In a first step, we implemented the “pure” BLL equation in form of a
tag recommender and compared its performance with a MostPopularu (MPu)
approach, which suggests the most frequent tags in a user’s tag assignments.
As expected, the comparison with MPu showed evidence of the incremented
value that results when additionally processing the recency of tag use. Moreover,
we compared our BLL recommender with the currently leading time-based tag
recommender approach introduced by [10] and showed the advantages of our
theory-driven approach.

In a second step, we extended the “pure” BLL equation to the full activation
equation proposed by Anderson et al. [4]. In this way, we also take into account
relevant context information (i.e., tags applied to the target resource) and fine-
tune base-level activation values. This has led to an improvement over the “pure”
BLL equation, and showed particularly good results in settings where context



information is important (e.g., if there is a high probability that previously
assigned resource tags get adapted by the users).

In a third step, we combined the activation equation with popular tags that
have been applied to the target resource by other users. When also considering
other users’ tags, it allows us to introduce new tags to the target user, namely
tags that have not been used by the target user before (e.g., [11, 12]) or [13]).
To this end we weighted the tags based on their frequency in the resource’s
tag assignments, hereinafter referred to as MostPopularr (MPr). We then com-
pared the performance of the combination of the activation equation and MPr

with well-established approaches, such as Collaborative Filtering (CF), FolkRank
(FR) and Pairwise Interaction Tensor Factorization (PITF), and showed that
this approach outperforms the state-of-the-art algorithms in terms of recom-
mender accuracy.

The remainder of this paper is organized as follows: we begin with discussing
related work (Section 2) and describing our approach in Section 3. Sections 4 and
5 describe the experimental setup and the baseline algorithms we used for our
evaluation. Section 6 addresses our three research questions and summarizes the
settings and results of our extensive evaluation. Finally, in Section 7, we conclude
the paper by discussing our findings in the light of the benefits of deriving tag
recommender mechanisms from empirical, cognitive research.

2 Related Work

Recent years have shown that tagging is an important feature of the Social
Web supporting the users with a simple mechanism to collaboratively organize
and find content [14]. Although tagging has the ability to improve search (in
particular tags provided by the individual) [15, 16], it is also known that users
are typically lazy in providing tags for instance for their bookmarked resources.
It is therefore not surprising that recent research has attempted to address this
challenge to support the individual in her tag application process in the form
of personalized tag recommenders. To date, the two following approaches have
been established: graph-based and content-based tag recommender systems [12].
In our work we focus on graph-based approaches.

The probably most notable work in this context is the work of Hotho et
al. [17] who introduced an algorithm termed FolkRank (FR) that has become
the most prominent benchmarking tag recommender approach over the past few
years. Subsequently, the work of Jäschke et al. [18] and Hamouda & Wanas [19]
showed how the classic Collaborative Filtering (CF) approach could be adopted
for the problem of predicting tags to the user in a personalized manner. More
recent work in this context are studies of Rendle et al. [20], Wetzker et al. [21],
Krestel et al. [22] or Rawashdeh et al. [23] who introduced a factorization model,
a Latent Dirichlet Allocation (LDA) model or a Link-Prediction model, based
on the Katz measure, to recommend tags to users.

Within the context of this paper, another relevant study addressing the po-
tential of social tagging systems to model the user in a resource context is pre-



sented in [24]. In this work similarities between users are defined through firstly,
their consensus in tagging behavior and secondly, their resource usage. The re-
sulting network with actors, resources, tags and tag assignments as nodes, is
modeled as a directed graph. The graph serves as a basis to spread activation
from one actor to another, by going through multiple types of nodes that rep-
resent context information linking the actors. Stanley et al. [25] studied a tag
recommendation model inspired by the declarative memory retrieval mechanism
of ACT-R (e.g., [4]) on forum data. Recommendations are based on two aspects,
the user’s tag history and co-occurrences between tag words and words extracted
from the post’s content. Although the model initially aims to implement the en-
tire activation equation of ACT-R, since it was tailored to the properties of a
computer science forum, where assumingly the frequency of tags does not change
significantly over time, the approach does not consider the time component as
it is done in this paper. Sigurbjörnsson et al. [26] suggests a slightly different
approach to calculate relatedness values between tags in order to recommend
tags in the image-sharing portal Flickr. The proposed method is based on the
Jaccard coefficient to normalize the co-occurrence of two tags

Although the mentioned approaches perform reasonably well, they are com-
putational expensive compared to simple “most popular tags” approaches. Fur-
thermore, they ignore recent observations with regard to social tagging systems,
such as the variation of the individual tagging behavior over time [27]. To that
end, recent research has made the first promising steps towards more accu-
rate graph-based models that also account for the variable of time [28, 10]. The
approaches have shown to outperform some of the current state-of-the-art tag
recommender algorithms.

In line with the latter strand of research, in this paper we present a novel
graph-based tag recommender mechanism that uses the activation equation that
is part of the former mentioned ACT-R theory (e.g., [4]) to integrate item fre-
quency and recency as well as current context information. We show that the
approach is not only very simple and straightforward but also reveal that the al-
gorithm outperforms current state-of-the-art graph-based (e.g., [21, 17, 18]) and
the leading time-based [10] tag recommender approaches.

3 Approach

In Section 1 we formulated the assumption that the activation equation consist-
ing of a base-level and associative component can be applied to explain a high
variance in a tag’s probability of being applied. To address our first research
question (as to whether the activation equation’s first component can be applied
to improve a “most popular tags by user” approach) we have calculated the
base-level activation B(t, u) of a given tag t in a user u’s set of tag assignments,
Yt,u. First, we determined a reference timestamp timestampref (in seconds) that
is the timestamp of the most recent bookmark of user u. In our dataset samples,
timestampref corresponded to the timestamp of the user’s bookmark that was
selected for the test set (see Section 4.2).



If i = 1 ... n indexes all tag assignments in Yt,u, the recency of a particular
tag assignment is given by timestampref − timestampi. Finally, B(t, u) of tag t
for a user u is given by the BLL equation:

B(t, u) = ln(

n∑
i=1

(timestampref − timestampi)−d) (3)

, where d is set to 0.5 based on [4]. In order to map the values onto a range of 0
to 1 we applied a normalization method as proposed in related work [29]:

‖B(t, u)‖ =
exp(B(t, u))∑

t′∈Yu

exp(B(t′, u))
(4)

, where Yu is the set of unique tags used by user u in the past.
To investigate our second research question (as to whether the BLL equation

can be further improved by also considering the associative component evoked
by the current context) we have implemented equation 1 in form of:

A(t, u) = ‖B(t, u)‖+
∑
j

Wj × Sj,i︸ ︷︷ ︸
AssociativeComponent

(5)

To calculate the variables of the associative component, i.e., to model a user’s
semantic context, we simply looked at the tags assigned by other users to the
given resource r. A user’s semantic context certainly consists of much more
aspects, such as content words in the title or in the page text. However, since
not all of our datasets contain title information or page text and other studies
have convincingly demonstrated the impact of a resource’s prominent tags on a
user’s tagging behavior (e.g., [11, 12]), we decided to approximate the context
by means of other users’ tags.

When applying the formula to a recommender system, related literature [26]
[30] suggests to use a measure of normalized tag co-occurrence to represent the
strength of an association. Accordingly, we define the co-occurrence between
two tags as the number of bookmarks in which both tags are included. To add
meaning to the co-occurrence value, the overall frequency of the two tags is also
taken into consideration. This is done by normalizing the co-occurrence value
according to the Jaccard coefficient (6) following the approach described in [26]:

Sj,i =
|tj ∩ ti|
|tj ∪ ti|

(6)

In our implementation, Sj,i is calculated as an association value between a
tag previously given by the target user (ti) and a tag that has been assigned to a
resource of interest (tj). Based on a tag co-occurence matrix that depicts the tag
relations of an entire data set, information about how many times two tags co-
occur (tj ∩ ti) is retrieved and set into relation with the number of bookmarks



in which at least one of the two tags appear (tj ∩ ti). We set the attentional
weight Wj to the number of times tj occurred in the tag assignments of the
target resource.

Finally, to examine our third research question (as to whether the activation
equation can be implemented in form of an effective recommender mechanism)
we extended equation 5 by also considering the most popular tags in the tag
assignments of the resource Yr (MPr, i.e., arg max t ∈ T (|Yr|)) [17]. This simple
extension was necessary to allow for the prediction of new and plausible tags
that a user has not assigned in her or his previous tagging history (e.g., (e.g.,
[11, 12]) or [13]). Finally, the list of recommended tags for a given user u and
resource r is calculated by the following equation:

T̃ (u, r) = arg max t ∈ T (β ‖A(t, u)‖︸ ︷︷ ︸
BLLAC

+(1− β)‖|Yt,r|‖

︸ ︷︷ ︸
BLLAC+MPr

) (7)

, where β is used to inversely weight the two components, i.e. the activation
values A(t, u) and the most popular tags of the target resource given by MPr.
The results presented in Section 6 were calculated using β = 0.5. However,
we focused on the performance of BLLAC+MPr in the experiments, i.e. on an
approach estimating a tag’s probability of being applied by means of user and
corresponding resource information. The source-code of our approaches [31] is
open-source and can be found online5.

4 Experimental Setup

In this section we describe in detail the datasets, the evaluation method and the
metrics used in our experiments.

4.1 Datasets

For the purposes of our study and for reasons of reproducibility, we focused
our investigations on three well-known and freely-available folksonomy datasets.
To test our approach on both types of advocates, known as broad and narrow
folksonomies [32] (in a broad folksonomy many users are allowed to annotate
a particular resource while in a narrow folksonomy only the user who has up-
loaded the resource is permitted to apply tags), freely available datasets from
the social bookmark and publication sharing system BibSonomy6, the reference
management system CiteULike7 (broad folksonomies) and the image and video
sharing platform Flickr8 (narrow folksonomy) were utilized.

5 https://github.com/learning-layers/TagRec/
6 http://www.kde.cs.uni-kassel.de/bibsonomy/dumps
7 http://www.citeulike.org/faq/data.adp
8 http://www.tagora-project.eu/



Table 1. Properties of the datasets, where |B| is the number of bookmarks, |U | the
number of users, |R| the number of resources, |T | the number of tags and |TAS| the
number of tag assignments.

Dataset Core |B| |U | |R| |T | |TAS|
BibSonomy - 400,983 5,488 346,444 103,503 1,479,970

3 41,764 788 8,711 5,757 161,509

CiteULike - 3,879,371 83,225 2,955,132 800,052 16,703,839
3 735,292 17,983 149,220 67,072 2,242,849

Flickr - 864,679 9,590 864,679 127,599 3,552,540
3 860,135 8,332 860,135 58,831 3,465,346

Since automatically generated tags affect the performance of the tag rec-
ommender systems, we excluded all of those tags from the datasets (e.g., for
BibSonomy and CiteULike we excluded the no-tag, bibtex-import-tag, etc.). Fur-
thermore, we decapitalized all tags as suggested by related work in the field (e.g.,
[20]). In the case of Flickr we randomly selected 3% of the user profiles for rea-
sons of computational effort (see also [33]). The overall dataset statistics can be
found in Table 1. As can be seen in column “Core”, we applied both: a p-core
pruning approach [34] (represented by “3”) to capture the issues of data sparse-
ness, as well as no p-core pruning (represented by “-”) to capture the issue of
cold-start users or items [35], respectively.

4.2 Evaluation Methodology

To evaluate our tag recommender approach we used a leave-one-out hold-out
method as proposed by popular and related work in this area (e.g., [18]). Hence,
we created two sets, one set for training and the other set for testing. To split up
each dataset in two, we eliminated for each user her latest bookmark (in time)
from the original dataset and added it to the test set. Each bookmark in the test
set consists of a collection of one or more tags to which we further refer as relevant
tags. The reduced original dataset was used for training, and the newly created
one for testing. This procedure simulates a real-world environment well and is a
recommended offline-evaluation procedure for time-based recommender systems
[36]. To finally quantify the performance of our approaches, a set of well-known
information retrieval performance standard metrics were utilized [18, 12]:

Recall (R@k) is calculated as the number of correctly recommended tags
divided by the number of relevant tags, where tku denotes the top k recommended
tags and Tu the list of relevant tags of a bookmark of user u:

R@k =
1

|U |
∑
u∈U

|tku ∩ Tu|
|Tu|

(8)



Precision (P@k) is calculated as the number of correctly recommended tags
divided by the number of recommended tags. As it can be seen in the following
formula, in contrast to R@k, P@k usually decreases with a higher number of
recommended tags k:

P@k =
1

|U |
∑
u∈U

|tku ∩ Tu|
|tku|

(9)

F1-score (F1@k) combines recall and precision into one score. It is calculated
as the product of P@k and R@k divided by the sum of R@k and P@k multiplied
by 2 [12]:

F1@k =
1

|U |
∑
u∈U

(2× R@k × P@k

R@k + P@k
) (10)

Mean reciprocal rank (MRR) is a ranking-dependent metric and is calcu-
lated as the sum of the reciprocal ranks of all relevant tags in the list of the
recommended tags. This means that a higher MRR is achieved if the relevant
tags occur at the beginning of the recommended tag list [23]:

MRR =
1

|U |

|U |∑
u=1

(
1

|Tu|
∑
t∈Tu

1

rank(t)
) (11)

Mean average precision (MAP) is an extension of the precision metric
that also looks on the ranking of the recommended tags. It is described in the
formula below where Bk is 1 if the recommended tag at position k is relevant
[23].

MAP =
1

|U |

|U |∑
u=1

(
1

|Tu|

|tku|∑
k=1

Bk × P@k) (12)

In particular, we report R@k, P@k, MRR and MAP for k = 10 and F1-Score
(F1@k) for k = 5 recommended tags9.

5 Baseline Algorithms

We compared our approaches to several baseline tag recommender algorithms.
The algorithms range from simple frequency-based approaches to more complex
mechanisms based on factorization or temporal models and have been selected
based on their popularity in the community, performance and novelty [37, 38].
The used baselines are the following:

9 F1@5 was also used as the main performance metric in the ECML PKDD Discovery
Challenge 2009: http://www.kde.cs.uni-kassel.de/ws/dc09/.



MostPopular (MP): This approach is an unpersonalized tag-recommender
algorithm that does not take into account information about the target user or
resource. MP recommends for any user and any resource the same set of tags
that is weighted by the frequency in all tag assignments [39].

MostPopularu (MPu): The most popular tags by user approach processes
tagging information about the user but ignores the resource component, which
means that a target user receives the same personalized tag suggestions, no
matter which resource is going to be tagged. MPu suggests the most frequent
tags in the tag assignments of the user [39].

MostPopularr (MPr): The most popular tags by resource algorithm uses the
previously assigned resource tags for the prediction process but ignores informa-
tion about the target user. MPr weights the tags based on their frequency in the
tag assignments of the resource [39].

MostPopularu,r (MPu,r): This algorithm is a mixture of the most popular
tags by user (MPu) and most popular tags by resource (MPr) approaches. MPu,r

joins both components using a simple linear combination [18].

Collaborative Filtering (CF): Marinho et al. [40] described how the classic
Collaborative Filtering (CF) approach [41] can be adapted for tag recommenda-
tions. Since folksonomies have ternary relations (users, resources and tags), the
classic CF approach can not be applied directly. Thus, the neighborhood of an
user is formed based on the tag assignments in the user profile. Furthermore, in
CF-based tag recommendations only the subset of users that have tagged the
target resource is taken into account when calculating the user neighborhood
(Note: if there are no users that have tagged the target resource in the past, all
users are treated as candidates for the neighborhood). The set of recommended
tags can then be determined based on this neighborhood [40, 18]. We used a
neighborhood size of 20 as suggested in related work [33].

Adapted PageRank (APR): Hotho et al. [17] adapted the well-known PageR-
ank algorithm in order to rank the nodes within the graph structure of a folk-
sonomy. This is based on the idea that a resource is important if it is tagged
with important tags by important users. Thus, the folksonomy is converted into
an undirected graph, where the co-occurences of users and resources, users and
tags and resources and tags are treated as weighted edges.

FolkRank (FR): The FolkRank algorithm is an extension of the Adapted
PageRank approach that was also proposed by Hotho et al. [17]. This extension
gives a higher importance to the preference vector via a differential approach
[18]. Our APR and FR implementations are based on the code and settings of



the open-source Java tag recommender framework provided by the University of
Kassel10.

Factorization Machines (FM): Rendle [42] introduced Factorization Ma-
chines which combine the advantages of Support Vector Machines (SVM) with
factorization models to build a general prediction model that is also capable of
tag recommendations. In contrast to SVMs, FMs are able to estimate interac-
tions between entities even in settings with huge sparsity (e.g., recommender
systems).

Pairwise Interaction Tensor Factorization (PITF): This approach pro-
posed by Rendle and Schmidt-Thieme [20] is an extension of Factorization Ma-
chines and is based on the Tucker Decomposition (TD) model. In contrast to TD,
PITF explicitly models the pairwise interactions between users, resources and
tags to provided personalized tag recommendations. The FM and PITF results
presented in this paper were calculated using the open-source C++ tag recom-
mender framework provided by the University of Konstanz11 with 256 factors,
as suggested by [20].

Temporal Tag Usage Patterns (GIRP): This time-dependent tag recom-
mender algorithm was presented by Zhang et al. [10] and is based on the fre-
quency and the temporal usage of a user’s tag assignments. In contrast to BLL
it models the temporal tag usage with an exponential distribution rather than
a power-law distribution.

GIRP with Tag Relevance to Resource (GIRPTM): This is an extension
of the GIRP algorithm that also takes the resource component into account [10].
This is done in the same manner as in BLLAC+MPr, thus adding the probability
values of MPr using a simple linear combination.

6 Results

The presentation of the evaluation results is organized in line with our three
research questions, as introduced in Section 1. With respect to the recommender
quality, we will turn our attention first to the BLL equation and its validity
to model tagging behavior, second, to the impact of context information when
added to the BLL equation (BLLAC) and third, to a comparison of our context
enriched BLL implementation (BLLAC + MPr) with state-of-the-art baseline
approaches.

The BLL equation models the user’s tagging behavior with respect to fre-
quency and recency. While the frequency of tag use is a fairly common parameter

10 http://www.kde.cs.uni-kassel.de/code
11 http://www.informatik.uni-konstanz.de/rendle/software/tag-recommender/



Table 2. F1@5, MRR and MAP values for BibSonomy, CiteULike and Flickr (no
core and core 3) showing that the BLL equation provides a valid model of a user’s
tagging behavior to predict tags (first research question). Moreover, the results imply
that using the activation equation (BLLAC) to also take into account semantic cues
(i.e, associations with resource tags) can further improve this model (second research
questions).

Dataset Core Measure MPu GIRP BLL BLLAC

BibSonomy - F1@5 .152 .157 .162 .169
MRR .114 .119 .125 .133
MAP .148 .155 .162 .172

3 F1@5 .215 .221 .228 .292
MRR .202 .210 .230 .286
MAP .238 .247 .272 .345

CiteULike - F1@5 .185 .194 .201 .211
MRR .165 .182 .193 .205
MAP .194 .213 .227 .242

3 F1@5 .272 .291 .300 .336
MRR .268 .294 .319 .365
MAP .305 .337 .366 .424

Flickr - F1@5 .435 .509 .523 .523
MRR .360 .445 .466 .466
MAP .468 .590 .619 .619

3 F1@5 .488 .577 .592 .592
MRR .407 .511 .533 .533
MAP .527 .676 .707 .707

for tag recommendations, the factor of time, that models the effects of a user’s
long term memory (as described through recency), is expected to bring addi-
tional value to tag recommendation approaches. That is why we investigate our
first research question by determining the effect of the recency component on
tag assignments.

When comparing BLL with MPu and GIRP, the results reported in Table 2
and Figure 1 clearly show that the time-dependent algorithms BLL and GIRP
both outperform the frequency-based MPu approach. Looking further at the two
time-dependent algorithms, BLL reaches higher levels of accuracy than the less
theory-driven GIRP algorithm in both settings (with and without p-core prun-
ing). Even more apparent is the impact of the recency component in the narrow
folksonomy (Flickr). Unlike the broad folksonomies (BibSonomy, CiteULike), the
Flickr dataset has no tags of other users available for the target resource. There-
fore, a user needs to assign tags without having the inspiration of previously
given tags. We assume that the user, to this end, needs to draw on her long term
memory that the BLL equation aims to mimic. In summary, these results prove
that the BLL equation provides a valid model of a user’s tagging behavior to
predict tags (first research question).
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Fig. 1. Recall/Precision plots for BibSonomy, CiteULike and Flickr (no core and core
3) showing the performance of BLL and BLLAC along with MPu and GIRP for 1 - 10
recommended tags (k).

By expanding BLL to BLLAC , we implement the activation equation as ex-
plained in Section 3. The activation equation enriches the base-level activation
(i.e., frequency and recency of tag use) by adding contextual activation through
tags previously assigned to the target resource. Looking at the results of this ex-
periment, as illustrated in Table 2 and Figure 1, a number of interesting aspects
appear. For one thing, it demonstrates that BLLAC reveals only a small im-
provement over BLL, when applied on the unfiltered datasets (no p-core) of the
broad folksonomies (BibSonomy and CiteULike). However, this changes when
looking at the results for the p-core pruned datasets (core 3). Caused by the
higher number of tags assigned to each resource, the contextual activation gains
impact. This leads to considerably increased values for all of the used metrics
(F1@5, MRR, MAP). One might wonder why the results of BLL and BLLAC

are the same in the case of the narrow folksonomy (Flickr). This is, in fact, an
expected outcome. As resources in the Flickr dataset are tagged by only one
user (i.e, the one that has uploaded it), the model of the resource component
does not generate additional value. According to these results we can answer
the second research question positively, since the fine-tuning or re-ranking of



the user tags based on context cues increases the recommender accuracy in the
broad folksonomies BibSonomy and CiteULike.

To address our third and last research question we combine our BLLAC ap-
proach with MPr, which leads to BLLAC+MPr. Hereby, BLLAC models the
context-aware user component while MPr further models the resource compo-
nent in order to also take into account new tags that have not been used by
the target user in the past. The results presented in Table 3 show that this
approach outperforms a set of state-of-the-art baseline algorithms as well as
BLL+MPr (without contextual activation of the user tags). Further looking
into the results, it becomes apparent that the three time-dependent algorithms
(GIRPTM, BLL+MPr and BLLAC+MPr) produce higher estimates (F1@5,
MRR and MAP) across all datasets as well as in both settings (with and without
p-core pruning). Moreover, an important observation is that our BLLAC+MPr

approach also outperforms GIRPTM, the currently leading, graph-based time-
depended tag recommendation algorithm. Particularly good results are shown
here for the ranking-dependent metrics such as MRR and MAP. This observation
clearly shows the advantages of our approach, that is build upon long-standing
models of human memory theory, over the less-theory driven GIRPTM algo-
rithm.

Another aspect worth discussing is the contrast of the results illustrated in
Table 2, where BLLAC reaches substantially higher levels of accuracy than BLL,
to the results outlined in Table 3, where BLLAC+MPr only indicate marginal
improvements over BLL+MPr. In our opinion, this effect appears because the
resource tag information depicted in MPr is congruent with data used for the
contextual activation in BLLAC . This finding suggests that the use of other
resource metadata, such as title or body-text, may be valuable when specifying
the context in BLLAC (see also Section 7). Similar observations can be made
when looking at the Recall/Precision curves in Figure 2.

In summary, our results clearly imply that the activation equation by An-
derson et al. [4] can be used to implement a highly effective recommender ap-
proach. Overall, the simulations demonstrate that it exceeds the performance
of well-established and effective recommenders, such as MPu,r, CF, APR, FM
and even the currently leading time-dependent approach GIRPTM [10] (third
research question). Finally, it is indispensable to highlight that BLLAC+MPr,
despite its simplicity, appears to be even more successful than the sophisticated
FR and PITF algorithms.

7 Discussion and Conclusion

In this study we followed a three-step strategy. We started by comparing the
performance of BLL with MPu to determine the effect of considering the re-
cency of each tag use. Results of an additional comparison may differentiate
our cognitive-psychological model from the less theory-driven GIRP approach
introduced by Zhang et al. [10]. Our findings, tackling the first research ques-
tion, clearly demonstrate that regardless of the evaluation metric and across
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Fig. 2. Recall/Precision plots for BibSonomy, CiteULike and Flickr (no core and core
3) showing the performance of BLL+MPr and BLLAC+MPr along with state-of-the-
art baseline mechanisms for 1 - 10 recommended tags (k).

all datasets, BLL reaches higher levels of accuracy than MPu and even outper-
forms GIRP. Thus, processing the recency of tag use is effective to account for
additional variance of users’ tagging behavior and therefore, a reasonable ex-
tension of simple “most popular tags” approaches. Furthermore, the advantage
over GIRP indicates that drawing on memory psychology guides the application
of a reliable and valid model built upon long-standing, empirical research. The
equations that Zhang et al. [10] used to implement their approach were devel-
oped from scratch rather than derived from existing research described above.
As a consequence, [10] models the recency of tag use by means of an exponential
function, which is clearly at odds with the power law of forgetting described in
related work (e.g., [5]).

In a second step, we have extended BLL to BLLAC using current context
information based on the activation equation of Anderson et al. [4]. Where BLL
gives the prior probability of tag reuse that is learned over time, the associative
component tunes this prior probability to the current context by exploiting the
current semantic cues from the environment (i.e., the previously assigned tags of
the target resource). This is in line with how ACT-R models the retrieval from



long-term memory. Our results show that this step clearly improves the “pure”
BLL equation, especially in case of the p-core pruned datasets, where more
context information (i.e, tag assignments of the target resource) are available to
calculate the associative component.

In a third step, we combined BLLAC with the most popular tags that have
been applied by other users to the target resource in the past (i.e., MPr) in order
to be able to also recommend new tags, i.e. tags that have not been used by the
target user before. Despite their simplicity, our results show that this combina-
tion (BLLAC+MPr) has potential to outperform well-established mechanisms,
such as CF, FR and PITF. We assume this is the case because, in following some
fundamental principles of human memory, our approaches are better adapted to
the statistical structure of the environment. Moreover, the results of this exper-
iment also show that there is only a small difference between BLLAC+MPr and
BLL+MPr (without contextual activation of the user tags), which suggests the
use of additional context information, such as content-based features (e.g., the
resource’s title or body-text). This would also be in line with the study presented
in [43], where the authors show that the resource title has a big impact on tags
in collaborative tagging systems and so could be a better alternative to represent
context cues than the popular tags of the resource used in the current work.

Finally, a glance on the results shows an interdependency between the exam-
ined dataset and the performance of our approaches. While the distance to other
strongly performing mechanisms does not appear to be large in case of broad
folksonomies (BibSonomy and CiteULike), this distance gets substantially larger
in a narrow folksonomoy (Flickr), where no tags of other users are available for
the target user’s resources. From this interdependency we conclude that applying
a model of human memory is primarily effective if tag assignments are mainly
driven by individual habits unaffected by the behavior of other users, such as it
is done in Flickr.

In future work, we will continue examining memory processes that are in-
volved in categorizing and tagging Web resources. For instance, in a recent study
[44], we introduced a mechanism by which memory processes involved in tag-
ging can be modeled on two levels of knowledge representation: on a semantic
level (representing categories or LDA topics) and on a verbal level (represent-
ing tags). Next, we will aim at combining this integrative mechanism with the
activation equation to examine a potential correlation between the impact of
recency (time-based forgetting) and the level of knowledge representation. We
believe that conclusions drawn from cognitive science will help to develop an
effective and psychologically plausible tag recommendation mechanism.

Finally, we plan to compare our approach also to other baselines, e.g., the
hybrid tag recommender algorithm mentioned in [45], and to use more datasets,
e.g., LastFm, to further show that our approach is capable of capturing various
kinds of tagging behavior.
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